Design of cognitive fog computing for intrusion detection in Internet of Things
Internet of things (IoT) is penetrating into every aspect of our lives including our body, our home and our living environment along with numerous security challenges. With rapidly growing number of connected devices in IoT, the scope for cyber-attack also increases exponentially. Therefore an effec...
Gespeichert in:
Veröffentlicht in: | Journal of communications and networks 2018, 20(3), , pp.291-298 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 3 |
container_start_page | 291 |
container_title | Journal of communications and networks |
container_volume | 20 |
creator | Prabavathy, S. Sundarakantham, K. Shalinie, S. Mercy |
description | Internet of things (IoT) is penetrating into every aspect of our lives including our body, our home and our living environment along with numerous security challenges. With rapidly growing number of connected devices in IoT, the scope for cyber-attack also increases exponentially. Therefore an effective intrusion detection system (IDS) is needed to efficiently detect the attack at faster rate in highly scalable and dynamic IoT environment. In this paper, a novel intrusion detection technique is proposed based on fog computing using Online Sequential Extreme Learning Machine (OS-ELM) which can intelligently interpret the attacks from the IoT traffic. In the proposed system, the existing centralized cloud intelligence in detecting the attack is distributed to local fog nodes to detect the attack at faster rate for IoT application. The distributed architecture of fog computing enables distributed intrusion detection mechanism with scalability, flexibility and interoperability. The analysis of the proposed system proves to be efficient in terms of response time and detection accuracy. |
doi_str_mv | 10.1109/JCN.2018.000041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2088949942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8437209</ieee_id><sourcerecordid>2088949942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-7bc7a38362b524892b55469e98e74d8cc3c1b747e83a9291dcfeedfaa47076473</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxRdRsFbPHrwsePKwNV_dJMdSvyrFgtRz2GZn17Q2qUlW8L8364pzefPg94bhZdklRhOMkbx9nr9MCMJigtIwfJSNsORlMZ0yfJx2QmRBKEen2VkI256gDI-y1R0E09rcNbl2rTXRfEHeuDa5_aGLxrbJ-dzY6LtgnM1riKBjvxmbL2wEbyH28fV7gsN5dtJUHwEu_nScvT3cr-dPxXL1uJjPloWmhMaCbzSvqKAl2UwJEzLJlJUSpADOaqE11XjDGQdBK0kkrnUDUDdVxTjiJeN0nN0Md61v1E4b5Srzq61TO69mr-uFYgSVFNHEXg_swbvPDkJUW9d5m95TBAkhmZSMJOp2oLR3IXho1MGbfeW_FUaqb1ilhlXfsBoaTomrIWEA4J8WjHKCJP0BgZp1zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088949942</pqid></control><display><type>article</type><title>Design of cognitive fog computing for intrusion detection in Internet of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Prabavathy, S. ; Sundarakantham, K. ; Shalinie, S. Mercy</creator><creatorcontrib>Prabavathy, S. ; Sundarakantham, K. ; Shalinie, S. Mercy</creatorcontrib><description>Internet of things (IoT) is penetrating into every aspect of our lives including our body, our home and our living environment along with numerous security challenges. With rapidly growing number of connected devices in IoT, the scope for cyber-attack also increases exponentially. Therefore an effective intrusion detection system (IDS) is needed to efficiently detect the attack at faster rate in highly scalable and dynamic IoT environment. In this paper, a novel intrusion detection technique is proposed based on fog computing using Online Sequential Extreme Learning Machine (OS-ELM) which can intelligently interpret the attacks from the IoT traffic. In the proposed system, the existing centralized cloud intelligence in detecting the attack is distributed to local fog nodes to detect the attack at faster rate for IoT application. The distributed architecture of fog computing enables distributed intrusion detection mechanism with scalability, flexibility and interoperability. The analysis of the proposed system proves to be efficient in terms of response time and detection accuracy.</description><identifier>ISSN: 1229-2370</identifier><identifier>EISSN: 1976-5541</identifier><identifier>DOI: 10.1109/JCN.2018.000041</identifier><language>eng</language><publisher>Seoul: Editorial Department of Journal of Communications and Networks</publisher><subject>Cloud computing ; Cybersecurity ; Distance learning ; Edge computing ; Extreme learning machine ; fog computing ; Internet of Things ; Internet of things (IoT) ; Interoperability ; Intrusion detection ; intrusion detection system ; Intrusion detection systems ; Neural networks ; Neurons ; Response time ; Training ; 전자/정보통신공학</subject><ispartof>Journal of Communications and Networks, 2018, 20(3), , pp.291-298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-7bc7a38362b524892b55469e98e74d8cc3c1b747e83a9291dcfeedfaa47076473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8437209$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8437209$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002366212$$DAccess content in National Research Foundation of Korea (NRF)$$Hfree_for_read</backlink></links><search><creatorcontrib>Prabavathy, S.</creatorcontrib><creatorcontrib>Sundarakantham, K.</creatorcontrib><creatorcontrib>Shalinie, S. Mercy</creatorcontrib><title>Design of cognitive fog computing for intrusion detection in Internet of Things</title><title>Journal of communications and networks</title><addtitle>JCN</addtitle><description>Internet of things (IoT) is penetrating into every aspect of our lives including our body, our home and our living environment along with numerous security challenges. With rapidly growing number of connected devices in IoT, the scope for cyber-attack also increases exponentially. Therefore an effective intrusion detection system (IDS) is needed to efficiently detect the attack at faster rate in highly scalable and dynamic IoT environment. In this paper, a novel intrusion detection technique is proposed based on fog computing using Online Sequential Extreme Learning Machine (OS-ELM) which can intelligently interpret the attacks from the IoT traffic. In the proposed system, the existing centralized cloud intelligence in detecting the attack is distributed to local fog nodes to detect the attack at faster rate for IoT application. The distributed architecture of fog computing enables distributed intrusion detection mechanism with scalability, flexibility and interoperability. The analysis of the proposed system proves to be efficient in terms of response time and detection accuracy.</description><subject>Cloud computing</subject><subject>Cybersecurity</subject><subject>Distance learning</subject><subject>Edge computing</subject><subject>Extreme learning machine</subject><subject>fog computing</subject><subject>Internet of Things</subject><subject>Internet of things (IoT)</subject><subject>Interoperability</subject><subject>Intrusion detection</subject><subject>intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Response time</subject><subject>Training</subject><subject>전자/정보통신공학</subject><issn>1229-2370</issn><issn>1976-5541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxRdRsFbPHrwsePKwNV_dJMdSvyrFgtRz2GZn17Q2qUlW8L8364pzefPg94bhZdklRhOMkbx9nr9MCMJigtIwfJSNsORlMZ0yfJx2QmRBKEen2VkI256gDI-y1R0E09rcNbl2rTXRfEHeuDa5_aGLxrbJ-dzY6LtgnM1riKBjvxmbL2wEbyH28fV7gsN5dtJUHwEu_nScvT3cr-dPxXL1uJjPloWmhMaCbzSvqKAl2UwJEzLJlJUSpADOaqE11XjDGQdBK0kkrnUDUDdVxTjiJeN0nN0Md61v1E4b5Srzq61TO69mr-uFYgSVFNHEXg_swbvPDkJUW9d5m95TBAkhmZSMJOp2oLR3IXho1MGbfeW_FUaqb1ilhlXfsBoaTomrIWEA4J8WjHKCJP0BgZp1zg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Prabavathy, S.</creator><creator>Sundarakantham, K.</creator><creator>Shalinie, S. Mercy</creator><general>Editorial Department of Journal of Communications and Networks</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>한국통신학회</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ACYCR</scope></search><sort><creationdate>20180601</creationdate><title>Design of cognitive fog computing for intrusion detection in Internet of Things</title><author>Prabavathy, S. ; Sundarakantham, K. ; Shalinie, S. Mercy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-7bc7a38362b524892b55469e98e74d8cc3c1b747e83a9291dcfeedfaa47076473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cloud computing</topic><topic>Cybersecurity</topic><topic>Distance learning</topic><topic>Edge computing</topic><topic>Extreme learning machine</topic><topic>fog computing</topic><topic>Internet of Things</topic><topic>Internet of things (IoT)</topic><topic>Interoperability</topic><topic>Intrusion detection</topic><topic>intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Response time</topic><topic>Training</topic><topic>전자/정보통신공학</topic><toplevel>online_resources</toplevel><creatorcontrib>Prabavathy, S.</creatorcontrib><creatorcontrib>Sundarakantham, K.</creatorcontrib><creatorcontrib>Shalinie, S. Mercy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Korean Citation Index</collection><jtitle>Journal of communications and networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prabavathy, S.</au><au>Sundarakantham, K.</au><au>Shalinie, S. Mercy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of cognitive fog computing for intrusion detection in Internet of Things</atitle><jtitle>Journal of communications and networks</jtitle><stitle>JCN</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>20</volume><issue>3</issue><spage>291</spage><epage>298</epage><pages>291-298</pages><issn>1229-2370</issn><eissn>1976-5541</eissn><abstract>Internet of things (IoT) is penetrating into every aspect of our lives including our body, our home and our living environment along with numerous security challenges. With rapidly growing number of connected devices in IoT, the scope for cyber-attack also increases exponentially. Therefore an effective intrusion detection system (IDS) is needed to efficiently detect the attack at faster rate in highly scalable and dynamic IoT environment. In this paper, a novel intrusion detection technique is proposed based on fog computing using Online Sequential Extreme Learning Machine (OS-ELM) which can intelligently interpret the attacks from the IoT traffic. In the proposed system, the existing centralized cloud intelligence in detecting the attack is distributed to local fog nodes to detect the attack at faster rate for IoT application. The distributed architecture of fog computing enables distributed intrusion detection mechanism with scalability, flexibility and interoperability. The analysis of the proposed system proves to be efficient in terms of response time and detection accuracy.</abstract><cop>Seoul</cop><pub>Editorial Department of Journal of Communications and Networks</pub><doi>10.1109/JCN.2018.000041</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1229-2370 |
ispartof | Journal of Communications and Networks, 2018, 20(3), , pp.291-298 |
issn | 1229-2370 1976-5541 |
language | eng |
recordid | cdi_proquest_journals_2088949942 |
source | IEEE Electronic Library (IEL) |
subjects | Cloud computing Cybersecurity Distance learning Edge computing Extreme learning machine fog computing Internet of Things Internet of things (IoT) Interoperability Intrusion detection intrusion detection system Intrusion detection systems Neural networks Neurons Response time Training 전자/정보통신공학 |
title | Design of cognitive fog computing for intrusion detection in Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20cognitive%20fog%20computing%20for%20intrusion%20detection%20in%20Internet%20of%20Things&rft.jtitle=Journal%20of%20communications%20and%20networks&rft.au=Prabavathy,%20S.&rft.date=2018-06-01&rft.volume=20&rft.issue=3&rft.spage=291&rft.epage=298&rft.pages=291-298&rft.issn=1229-2370&rft.eissn=1976-5541&rft_id=info:doi/10.1109/JCN.2018.000041&rft_dat=%3Cproquest_RIE%3E2088949942%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088949942&rft_id=info:pmid/&rft_ieee_id=8437209&rfr_iscdi=true |