Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide
A facile MOFs-derived controllable strategy was developed to construct highly active CuxCe1−xO2 catalysts through directly annealing CuxCe1−x-BTC MOFs under different temperatures for CO-PROX reaction. [Display omitted] •CuO-CeO2 catalysts are synthesized via thermolysis of CuxCe1−x-BTC MOFs.•Highly...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2018-10, Vol.229, p.217-226 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | |
container_start_page | 217 |
container_title | Fuel (Guildford) |
container_volume | 229 |
creator | Gong, Xia Wang, Wei-Wei Fu, Xin-Pu Wei, Shuai Yu, Wen-Zhu Liu, Baocang Jia, Chun-Jiang Zhang, Jun |
description | A facile MOFs-derived controllable strategy was developed to construct highly active CuxCe1−xO2 catalysts through directly annealing CuxCe1−x-BTC MOFs under different temperatures for CO-PROX reaction.
[Display omitted]
•CuO-CeO2 catalysts are synthesized via thermolysis of CuxCe1−x-BTC MOFs.•Highly dispersed CuO clusters in CeO2 are beneficial for the CO-PROX reaction.•Cu+ sites are crucial for improving the catalytic performance of CuO-CeO2 catalyst.•The reducibility and oxygen vacancies are important as well as Cu+ sites.•The synthetic approach is surfactant-free and scalable at a low cost.
Among currently studied catalysts, CuO-CeO2 based materials hold the greatest promise for the preferential oxidation of CO (CO-PROX). Recently, many efforts have been concentrated on developing the original nanostructures inherited from metal-organic-frameworks (MOFs), which are considered to be excellent sacrificial templates or precursors to achieve metal oxide (or metal) nanoparticles with unique structure. In this paper, we synthesized CuO-CeO2 catalysts using an efficient and general strategy derived from CuxCe1−x-BTC MOFs after high temperature treatment. The as-prepared CuO-CeO2 catalysts display variable morphologies, crystal structures, and specific surface areas based on different ratios of Cu/Ce and calcination temperature. The catalytic performance shows that all CuO-CeO2 composite catalysts derived from the CuxCe1−x-BTC MOFs via heat treatment exhibit excellent catalytic performance for the CO-PROX reaction, and the Cu0.3Ce0.7O2 is the most active catalyst obtained under high calcination temperature at 650 °C for 4 h, demonstrating that the increase of Cu content and high temperature treatment can create more highly dispersed CuO clusters, which is in favor of the CO-PROX reaction. Meanwhile, the in-situ DRIFTS results show that the Cu0.3Ce0.7O2 catalyst displays the super CO adsorption capability, which induces the difference of catalytic performance for the CO-PROX reaction. |
doi_str_mv | 10.1016/j.fuel.2018.04.071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088803671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001623611830704X</els_id><sourcerecordid>2088803671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-be852e297e8a1ddba8697020a358358db6c253b446f8f75fb5094c7437876fb53</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EEkvLC3CyxDnBjpPYK3FBFRSkIi70bDnOuHhJMmHslO7L8Kx4dzkjWfJ49P3_ePQz9kaKWgrZvzvUYYOpboQ0tWhroeUztpNGq0rLTj1nO1GoqlG9fMlepXQQQmjTtTv25ytkN1VID26JvgrkZviN9JOPQPERRu5xyYTT5IYJeDou-QekmDgGPkPCFQm3VKB1Bap80Wwzx6c4QunNK6aYS-XKiGPKiQckXgz4ShCAYMnRTWfc5YjLydQ7Gko143J2uWYvgpsSvP53X7H7Tx-_33yu7r7dfrn5cFd51Xe5GsB0DTR7DcbJcRyc6fdaNMKpzpQzDr1vOjW0bR9M0F0YOrFvvW6VNrovL3XF3l58V8JfG6RsD7jRUkbaRhhjhOq1LFRzoTxhSmUHu1KcHR2tFPaUgz3YUw72lIMVrRVn0fuLCMr_HyOQTT7C4mGMBD7bEeP_5H8BgkiWEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088803671</pqid></control><display><type>article</type><title>Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gong, Xia ; Wang, Wei-Wei ; Fu, Xin-Pu ; Wei, Shuai ; Yu, Wen-Zhu ; Liu, Baocang ; Jia, Chun-Jiang ; Zhang, Jun</creator><creatorcontrib>Gong, Xia ; Wang, Wei-Wei ; Fu, Xin-Pu ; Wei, Shuai ; Yu, Wen-Zhu ; Liu, Baocang ; Jia, Chun-Jiang ; Zhang, Jun</creatorcontrib><description>A facile MOFs-derived controllable strategy was developed to construct highly active CuxCe1−xO2 catalysts through directly annealing CuxCe1−x-BTC MOFs under different temperatures for CO-PROX reaction.
[Display omitted]
•CuO-CeO2 catalysts are synthesized via thermolysis of CuxCe1−x-BTC MOFs.•Highly dispersed CuO clusters in CeO2 are beneficial for the CO-PROX reaction.•Cu+ sites are crucial for improving the catalytic performance of CuO-CeO2 catalyst.•The reducibility and oxygen vacancies are important as well as Cu+ sites.•The synthetic approach is surfactant-free and scalable at a low cost.
Among currently studied catalysts, CuO-CeO2 based materials hold the greatest promise for the preferential oxidation of CO (CO-PROX). Recently, many efforts have been concentrated on developing the original nanostructures inherited from metal-organic-frameworks (MOFs), which are considered to be excellent sacrificial templates or precursors to achieve metal oxide (or metal) nanoparticles with unique structure. In this paper, we synthesized CuO-CeO2 catalysts using an efficient and general strategy derived from CuxCe1−x-BTC MOFs after high temperature treatment. The as-prepared CuO-CeO2 catalysts display variable morphologies, crystal structures, and specific surface areas based on different ratios of Cu/Ce and calcination temperature. The catalytic performance shows that all CuO-CeO2 composite catalysts derived from the CuxCe1−x-BTC MOFs via heat treatment exhibit excellent catalytic performance for the CO-PROX reaction, and the Cu0.3Ce0.7O2 is the most active catalyst obtained under high calcination temperature at 650 °C for 4 h, demonstrating that the increase of Cu content and high temperature treatment can create more highly dispersed CuO clusters, which is in favor of the CO-PROX reaction. Meanwhile, the in-situ DRIFTS results show that the Cu0.3Ce0.7O2 catalyst displays the super CO adsorption capability, which induces the difference of catalytic performance for the CO-PROX reaction.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.04.071</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon monoxide ; Catalysis ; Catalysts ; Catalytic oxidation ; Cerium ; Cerium oxides ; Chemical synthesis ; CO-PROX ; Copper ; Copper oxides ; Copper-cerium oxide composite ; Crystal structure ; Heat treatment ; High temperature ; Metal-organic frameworks ; Metals ; Morphology ; Nanoparticles ; Oxidation ; Oxides ; Roasting ; Surface active species ; Temperature effects</subject><ispartof>Fuel (Guildford), 2018-10, Vol.229, p.217-226</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Oct 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-be852e297e8a1ddba8697020a358358db6c253b446f8f75fb5094c7437876fb53</citedby><cites>FETCH-LOGICAL-c365t-be852e297e8a1ddba8697020a358358db6c253b446f8f75fb5094c7437876fb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2018.04.071$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Gong, Xia</creatorcontrib><creatorcontrib>Wang, Wei-Wei</creatorcontrib><creatorcontrib>Fu, Xin-Pu</creatorcontrib><creatorcontrib>Wei, Shuai</creatorcontrib><creatorcontrib>Yu, Wen-Zhu</creatorcontrib><creatorcontrib>Liu, Baocang</creatorcontrib><creatorcontrib>Jia, Chun-Jiang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide</title><title>Fuel (Guildford)</title><description>A facile MOFs-derived controllable strategy was developed to construct highly active CuxCe1−xO2 catalysts through directly annealing CuxCe1−x-BTC MOFs under different temperatures for CO-PROX reaction.
[Display omitted]
•CuO-CeO2 catalysts are synthesized via thermolysis of CuxCe1−x-BTC MOFs.•Highly dispersed CuO clusters in CeO2 are beneficial for the CO-PROX reaction.•Cu+ sites are crucial for improving the catalytic performance of CuO-CeO2 catalyst.•The reducibility and oxygen vacancies are important as well as Cu+ sites.•The synthetic approach is surfactant-free and scalable at a low cost.
Among currently studied catalysts, CuO-CeO2 based materials hold the greatest promise for the preferential oxidation of CO (CO-PROX). Recently, many efforts have been concentrated on developing the original nanostructures inherited from metal-organic-frameworks (MOFs), which are considered to be excellent sacrificial templates or precursors to achieve metal oxide (or metal) nanoparticles with unique structure. In this paper, we synthesized CuO-CeO2 catalysts using an efficient and general strategy derived from CuxCe1−x-BTC MOFs after high temperature treatment. The as-prepared CuO-CeO2 catalysts display variable morphologies, crystal structures, and specific surface areas based on different ratios of Cu/Ce and calcination temperature. The catalytic performance shows that all CuO-CeO2 composite catalysts derived from the CuxCe1−x-BTC MOFs via heat treatment exhibit excellent catalytic performance for the CO-PROX reaction, and the Cu0.3Ce0.7O2 is the most active catalyst obtained under high calcination temperature at 650 °C for 4 h, demonstrating that the increase of Cu content and high temperature treatment can create more highly dispersed CuO clusters, which is in favor of the CO-PROX reaction. Meanwhile, the in-situ DRIFTS results show that the Cu0.3Ce0.7O2 catalyst displays the super CO adsorption capability, which induces the difference of catalytic performance for the CO-PROX reaction.</description><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic oxidation</subject><subject>Cerium</subject><subject>Cerium oxides</subject><subject>Chemical synthesis</subject><subject>CO-PROX</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Copper-cerium oxide composite</subject><subject>Crystal structure</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxides</subject><subject>Roasting</subject><subject>Surface active species</subject><subject>Temperature effects</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EEkvLC3CyxDnBjpPYK3FBFRSkIi70bDnOuHhJMmHslO7L8Kx4dzkjWfJ49P3_ePQz9kaKWgrZvzvUYYOpboQ0tWhroeUztpNGq0rLTj1nO1GoqlG9fMlepXQQQmjTtTv25ytkN1VID26JvgrkZviN9JOPQPERRu5xyYTT5IYJeDou-QekmDgGPkPCFQm3VKB1Bap80Wwzx6c4QunNK6aYS-XKiGPKiQckXgz4ShCAYMnRTWfc5YjLydQ7Gko143J2uWYvgpsSvP53X7H7Tx-_33yu7r7dfrn5cFd51Xe5GsB0DTR7DcbJcRyc6fdaNMKpzpQzDr1vOjW0bR9M0F0YOrFvvW6VNrovL3XF3l58V8JfG6RsD7jRUkbaRhhjhOq1LFRzoTxhSmUHu1KcHR2tFPaUgz3YUw72lIMVrRVn0fuLCMr_HyOQTT7C4mGMBD7bEeP_5H8BgkiWEg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Gong, Xia</creator><creator>Wang, Wei-Wei</creator><creator>Fu, Xin-Pu</creator><creator>Wei, Shuai</creator><creator>Yu, Wen-Zhu</creator><creator>Liu, Baocang</creator><creator>Jia, Chun-Jiang</creator><creator>Zhang, Jun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20181001</creationdate><title>Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide</title><author>Gong, Xia ; Wang, Wei-Wei ; Fu, Xin-Pu ; Wei, Shuai ; Yu, Wen-Zhu ; Liu, Baocang ; Jia, Chun-Jiang ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-be852e297e8a1ddba8697020a358358db6c253b446f8f75fb5094c7437876fb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic oxidation</topic><topic>Cerium</topic><topic>Cerium oxides</topic><topic>Chemical synthesis</topic><topic>CO-PROX</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Copper-cerium oxide composite</topic><topic>Crystal structure</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxides</topic><topic>Roasting</topic><topic>Surface active species</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Xia</creatorcontrib><creatorcontrib>Wang, Wei-Wei</creatorcontrib><creatorcontrib>Fu, Xin-Pu</creatorcontrib><creatorcontrib>Wei, Shuai</creatorcontrib><creatorcontrib>Yu, Wen-Zhu</creatorcontrib><creatorcontrib>Liu, Baocang</creatorcontrib><creatorcontrib>Jia, Chun-Jiang</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Xia</au><au>Wang, Wei-Wei</au><au>Fu, Xin-Pu</au><au>Wei, Shuai</au><au>Yu, Wen-Zhu</au><au>Liu, Baocang</au><au>Jia, Chun-Jiang</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide</atitle><jtitle>Fuel (Guildford)</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>229</volume><spage>217</spage><epage>226</epage><pages>217-226</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>A facile MOFs-derived controllable strategy was developed to construct highly active CuxCe1−xO2 catalysts through directly annealing CuxCe1−x-BTC MOFs under different temperatures for CO-PROX reaction.
[Display omitted]
•CuO-CeO2 catalysts are synthesized via thermolysis of CuxCe1−x-BTC MOFs.•Highly dispersed CuO clusters in CeO2 are beneficial for the CO-PROX reaction.•Cu+ sites are crucial for improving the catalytic performance of CuO-CeO2 catalyst.•The reducibility and oxygen vacancies are important as well as Cu+ sites.•The synthetic approach is surfactant-free and scalable at a low cost.
Among currently studied catalysts, CuO-CeO2 based materials hold the greatest promise for the preferential oxidation of CO (CO-PROX). Recently, many efforts have been concentrated on developing the original nanostructures inherited from metal-organic-frameworks (MOFs), which are considered to be excellent sacrificial templates or precursors to achieve metal oxide (or metal) nanoparticles with unique structure. In this paper, we synthesized CuO-CeO2 catalysts using an efficient and general strategy derived from CuxCe1−x-BTC MOFs after high temperature treatment. The as-prepared CuO-CeO2 catalysts display variable morphologies, crystal structures, and specific surface areas based on different ratios of Cu/Ce and calcination temperature. The catalytic performance shows that all CuO-CeO2 composite catalysts derived from the CuxCe1−x-BTC MOFs via heat treatment exhibit excellent catalytic performance for the CO-PROX reaction, and the Cu0.3Ce0.7O2 is the most active catalyst obtained under high calcination temperature at 650 °C for 4 h, demonstrating that the increase of Cu content and high temperature treatment can create more highly dispersed CuO clusters, which is in favor of the CO-PROX reaction. Meanwhile, the in-situ DRIFTS results show that the Cu0.3Ce0.7O2 catalyst displays the super CO adsorption capability, which induces the difference of catalytic performance for the CO-PROX reaction.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.04.071</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2018-10, Vol.229, p.217-226 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2088803671 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon monoxide Catalysis Catalysts Catalytic oxidation Cerium Cerium oxides Chemical synthesis CO-PROX Copper Copper oxides Copper-cerium oxide composite Crystal structure Heat treatment High temperature Metal-organic frameworks Metals Morphology Nanoparticles Oxidation Oxides Roasting Surface active species Temperature effects |
title | Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T23%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-organic-framework%20derived%20controllable%20synthesis%20of%20mesoporous%20copper-cerium%20oxide%20composite%20catalysts%20for%20the%20preferential%20oxidation%20of%20carbon%20monoxide&rft.jtitle=Fuel%20(Guildford)&rft.au=Gong,%20Xia&rft.date=2018-10-01&rft.volume=229&rft.spage=217&rft.epage=226&rft.pages=217-226&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.04.071&rft_dat=%3Cproquest_cross%3E2088803671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088803671&rft_id=info:pmid/&rft_els_id=S001623611830704X&rfr_iscdi=true |