Sensitivity of surface hazard to different factors and site response analysis approaches: a case study for a soft rock site
Near-surface effects for a soft rock site (average shear-wave velocity of the top 30 m, Vs 30 ≈ 800 m/s) for a proposed nuclear power station in the UK are integrated into the “bedrock” results of a probabilistic seismic hazard analysis (PSHA) by application of US Nuclear Regulatory Commission (USN...
Gespeichert in:
Veröffentlicht in: | Bulletin of earthquake engineering 2019-01, Vol.17 (1), p.73-96 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Bulletin of earthquake engineering |
container_volume | 17 |
creator | Lessi-Cheimariou, A. Tromans, I. J. Rathje, E. Robertson, C. |
description | Near-surface effects for a soft rock site (average shear-wave velocity of the top 30 m, Vs
30
≈ 800 m/s) for a proposed nuclear power station in the UK are integrated into the “bedrock” results of a probabilistic seismic hazard analysis (PSHA) by application of US Nuclear Regulatory Commission (USNRC) Approach 3 and employing a partially non-ergodic PSHA. The sensitivity of the surface hazard to the site response analysis method is assessed, employing both random vibration theory (RVT) and time series (TS) approaches. The effects of different assumptions relating to strong-motion duration, selection of target frequency in the surface uniform hazard spectrum (UHS) and the incorporation of the variability of site properties through Monte Carlo simulations are also quantified. The results show that for the examined stiff site, with response concentrated at high frequencies, the use of RVT site response analysis does not introduce a systematic bias in the low frequency ground motion predictions and the duration used in the definition of the input ground motions is demonstrated to have a secondary effect on the site response. The incorporation of the variability of site properties and the selection of the target frequencies in the convolution are shown to be important in the derivation of the uniform hazard spectrum. |
doi_str_mv | 10.1007/s10518-018-0446-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088800401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088800401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-ee9ca12bbd40e3ed39ec23e3dc080afc138715054eed69134bbb584f28989ba83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosouK7-AG8Bz9VJ04_Umyx-wYIHFbyVNJ24XdemZrJC9c-bbgVPHoYZ5n2fYXij6JTDOQcoLohDxmUMY6VpHvO9aMazQsQ8zfL93QxxkfOXw-iIaA2QZEUJs-j7ETtqffvZ-oFZw2jrjNLIVupLuYZ5y5rWGHTYeRYEbx0x1TUsMMgcUm87wrBRm4HaIPW9s0qvkC6ZYloFjfy2GZixLizIGs-c1W87_jg6MGpDePLb59HzzfXT4i5ePtzeL66WsRKi9DFiqRVP6rpJAQU2okSdCBSNBgnKaC5kwTPIUsQmL7lI67rOZGoSWcqyVlLMo7PpbvjtY4vkq7XduvAyVQlIKQFS4MHFJ5d2lsihqXrXvis3VByqMeNqyriCsULG1cgkE0PB272i-7v8P_QDsQuBCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088800401</pqid></control><display><type>article</type><title>Sensitivity of surface hazard to different factors and site response analysis approaches: a case study for a soft rock site</title><source>SpringerLink Journals</source><creator>Lessi-Cheimariou, A. ; Tromans, I. J. ; Rathje, E. ; Robertson, C.</creator><creatorcontrib>Lessi-Cheimariou, A. ; Tromans, I. J. ; Rathje, E. ; Robertson, C.</creatorcontrib><description>Near-surface effects for a soft rock site (average shear-wave velocity of the top 30 m, Vs
30
≈ 800 m/s) for a proposed nuclear power station in the UK are integrated into the “bedrock” results of a probabilistic seismic hazard analysis (PSHA) by application of US Nuclear Regulatory Commission (USNRC) Approach 3 and employing a partially non-ergodic PSHA. The sensitivity of the surface hazard to the site response analysis method is assessed, employing both random vibration theory (RVT) and time series (TS) approaches. The effects of different assumptions relating to strong-motion duration, selection of target frequency in the surface uniform hazard spectrum (UHS) and the incorporation of the variability of site properties through Monte Carlo simulations are also quantified. The results show that for the examined stiff site, with response concentrated at high frequencies, the use of RVT site response analysis does not introduce a systematic bias in the low frequency ground motion predictions and the duration used in the definition of the input ground motions is demonstrated to have a secondary effect on the site response. The incorporation of the variability of site properties and the selection of the target frequencies in the convolution are shown to be important in the derivation of the uniform hazard spectrum.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-018-0446-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bedrock ; Case studies ; Case Study Reports ; Civil Engineering ; Computer simulation ; Convolution ; Duration ; Earth and Environmental Science ; Earth Sciences ; Environmental Engineering/Biotechnology ; Geological hazards ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Ground motion ; Hazard assessment ; Hydrogeology ; Monte Carlo simulation ; Nuclear energy ; Nuclear power plants ; Power plants ; Properties ; Random vibration ; Response analysis ; Rocks ; Seismic analysis ; Seismic hazard ; Seismic velocities ; Sensitivity analysis ; Statistical methods ; Structural Geology ; Variability ; Vibration ; Vibration analysis ; Wave velocity</subject><ispartof>Bulletin of earthquake engineering, 2019-01, Vol.17 (1), p.73-96</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Bulletin of Earthquake Engineering is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-ee9ca12bbd40e3ed39ec23e3dc080afc138715054eed69134bbb584f28989ba83</citedby><cites>FETCH-LOGICAL-a339t-ee9ca12bbd40e3ed39ec23e3dc080afc138715054eed69134bbb584f28989ba83</cites><orcidid>0000-0001-9778-5067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10518-018-0446-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10518-018-0446-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lessi-Cheimariou, A.</creatorcontrib><creatorcontrib>Tromans, I. J.</creatorcontrib><creatorcontrib>Rathje, E.</creatorcontrib><creatorcontrib>Robertson, C.</creatorcontrib><title>Sensitivity of surface hazard to different factors and site response analysis approaches: a case study for a soft rock site</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>Near-surface effects for a soft rock site (average shear-wave velocity of the top 30 m, Vs
30
≈ 800 m/s) for a proposed nuclear power station in the UK are integrated into the “bedrock” results of a probabilistic seismic hazard analysis (PSHA) by application of US Nuclear Regulatory Commission (USNRC) Approach 3 and employing a partially non-ergodic PSHA. The sensitivity of the surface hazard to the site response analysis method is assessed, employing both random vibration theory (RVT) and time series (TS) approaches. The effects of different assumptions relating to strong-motion duration, selection of target frequency in the surface uniform hazard spectrum (UHS) and the incorporation of the variability of site properties through Monte Carlo simulations are also quantified. The results show that for the examined stiff site, with response concentrated at high frequencies, the use of RVT site response analysis does not introduce a systematic bias in the low frequency ground motion predictions and the duration used in the definition of the input ground motions is demonstrated to have a secondary effect on the site response. The incorporation of the variability of site properties and the selection of the target frequencies in the convolution are shown to be important in the derivation of the uniform hazard spectrum.</description><subject>Bedrock</subject><subject>Case studies</subject><subject>Case Study Reports</subject><subject>Civil Engineering</subject><subject>Computer simulation</subject><subject>Convolution</subject><subject>Duration</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Geological hazards</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hazard assessment</subject><subject>Hydrogeology</subject><subject>Monte Carlo simulation</subject><subject>Nuclear energy</subject><subject>Nuclear power plants</subject><subject>Power plants</subject><subject>Properties</subject><subject>Random vibration</subject><subject>Response analysis</subject><subject>Rocks</subject><subject>Seismic analysis</subject><subject>Seismic hazard</subject><subject>Seismic velocities</subject><subject>Sensitivity analysis</subject><subject>Statistical methods</subject><subject>Structural Geology</subject><subject>Variability</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Wave velocity</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhosouK7-AG8Bz9VJ04_Umyx-wYIHFbyVNJ24XdemZrJC9c-bbgVPHoYZ5n2fYXij6JTDOQcoLohDxmUMY6VpHvO9aMazQsQ8zfL93QxxkfOXw-iIaA2QZEUJs-j7ETtqffvZ-oFZw2jrjNLIVupLuYZ5y5rWGHTYeRYEbx0x1TUsMMgcUm87wrBRm4HaIPW9s0qvkC6ZYloFjfy2GZixLizIGs-c1W87_jg6MGpDePLb59HzzfXT4i5ePtzeL66WsRKi9DFiqRVP6rpJAQU2okSdCBSNBgnKaC5kwTPIUsQmL7lI67rOZGoSWcqyVlLMo7PpbvjtY4vkq7XduvAyVQlIKQFS4MHFJ5d2lsihqXrXvis3VByqMeNqyriCsULG1cgkE0PB272i-7v8P_QDsQuBCQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Lessi-Cheimariou, A.</creator><creator>Tromans, I. J.</creator><creator>Rathje, E.</creator><creator>Robertson, C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9778-5067</orcidid></search><sort><creationdate>20190101</creationdate><title>Sensitivity of surface hazard to different factors and site response analysis approaches: a case study for a soft rock site</title><author>Lessi-Cheimariou, A. ; Tromans, I. J. ; Rathje, E. ; Robertson, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-ee9ca12bbd40e3ed39ec23e3dc080afc138715054eed69134bbb584f28989ba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bedrock</topic><topic>Case studies</topic><topic>Case Study Reports</topic><topic>Civil Engineering</topic><topic>Computer simulation</topic><topic>Convolution</topic><topic>Duration</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Geological hazards</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hazard assessment</topic><topic>Hydrogeology</topic><topic>Monte Carlo simulation</topic><topic>Nuclear energy</topic><topic>Nuclear power plants</topic><topic>Power plants</topic><topic>Properties</topic><topic>Random vibration</topic><topic>Response analysis</topic><topic>Rocks</topic><topic>Seismic analysis</topic><topic>Seismic hazard</topic><topic>Seismic velocities</topic><topic>Sensitivity analysis</topic><topic>Statistical methods</topic><topic>Structural Geology</topic><topic>Variability</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lessi-Cheimariou, A.</creatorcontrib><creatorcontrib>Tromans, I. J.</creatorcontrib><creatorcontrib>Rathje, E.</creatorcontrib><creatorcontrib>Robertson, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lessi-Cheimariou, A.</au><au>Tromans, I. J.</au><au>Rathje, E.</au><au>Robertson, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of surface hazard to different factors and site response analysis approaches: a case study for a soft rock site</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>17</volume><issue>1</issue><spage>73</spage><epage>96</epage><pages>73-96</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>Near-surface effects for a soft rock site (average shear-wave velocity of the top 30 m, Vs
30
≈ 800 m/s) for a proposed nuclear power station in the UK are integrated into the “bedrock” results of a probabilistic seismic hazard analysis (PSHA) by application of US Nuclear Regulatory Commission (USNRC) Approach 3 and employing a partially non-ergodic PSHA. The sensitivity of the surface hazard to the site response analysis method is assessed, employing both random vibration theory (RVT) and time series (TS) approaches. The effects of different assumptions relating to strong-motion duration, selection of target frequency in the surface uniform hazard spectrum (UHS) and the incorporation of the variability of site properties through Monte Carlo simulations are also quantified. The results show that for the examined stiff site, with response concentrated at high frequencies, the use of RVT site response analysis does not introduce a systematic bias in the low frequency ground motion predictions and the duration used in the definition of the input ground motions is demonstrated to have a secondary effect on the site response. The incorporation of the variability of site properties and the selection of the target frequencies in the convolution are shown to be important in the derivation of the uniform hazard spectrum.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-018-0446-1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-9778-5067</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-761X |
ispartof | Bulletin of earthquake engineering, 2019-01, Vol.17 (1), p.73-96 |
issn | 1570-761X 1573-1456 |
language | eng |
recordid | cdi_proquest_journals_2088800401 |
source | SpringerLink Journals |
subjects | Bedrock Case studies Case Study Reports Civil Engineering Computer simulation Convolution Duration Earth and Environmental Science Earth Sciences Environmental Engineering/Biotechnology Geological hazards Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Ground motion Hazard assessment Hydrogeology Monte Carlo simulation Nuclear energy Nuclear power plants Power plants Properties Random vibration Response analysis Rocks Seismic analysis Seismic hazard Seismic velocities Sensitivity analysis Statistical methods Structural Geology Variability Vibration Vibration analysis Wave velocity |
title | Sensitivity of surface hazard to different factors and site response analysis approaches: a case study for a soft rock site |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20surface%20hazard%20to%20different%20factors%20and%20site%20response%20analysis%20approaches:%20a%20case%20study%20for%20a%20soft%20rock%20site&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Lessi-Cheimariou,%20A.&rft.date=2019-01-01&rft.volume=17&rft.issue=1&rft.spage=73&rft.epage=96&rft.pages=73-96&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-018-0446-1&rft_dat=%3Cproquest_cross%3E2088800401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088800401&rft_id=info:pmid/&rfr_iscdi=true |