Scaling-up versus scaling-out networking in data centers: a comparative robustness analysis

The information and communication technology nowadays more than ever depends on the Internet and cloud computing, so that the data centers (DCs) have been converted to a constitutive unit of the cloud computing. A DC is composed of two primary parts: servers and Data Center Networks (DCNs). Robustne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2018-08, Vol.74 (8), p.3950-3974
Hauptverfasser: Shooshtarian, L., Safaei, F., Tizghadam, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3974
container_issue 8
container_start_page 3950
container_title The Journal of supercomputing
container_volume 74
creator Shooshtarian, L.
Safaei, F.
Tizghadam, A.
description The information and communication technology nowadays more than ever depends on the Internet and cloud computing, so that the data centers (DCs) have been converted to a constitutive unit of the cloud computing. A DC is composed of two primary parts: servers and Data Center Networks (DCNs). Robustness and scalability are two major challenges of the DCNs that are expanded based on two strategies, scale-out, and scale-up. This paper is distinctive from the related studies in two aspects. The first one is to simultaneously focus on both the scalability and the robustness challenges of the DCNs. For this purpose, we will concentrate on the comparison of robustness in the scalable models of these networks. The second one is, despite the previous work that only evaluated the DCN robustness under topological changes, we evaluated the robustness and fault tolerance against three types of unexpected changes in topology, traffic, and COI (community of interest) in the present work. Hence, we have chosen the network criticality (NC) as a graph-theoretic metric for analyzing DCN robustness. Afterward, we compare some structural and spectral graph metrics with NC among some well-known DCNs, and their scale-out and scale-up. Our results are useful to select the appropriate scaling strategy with the goal of maximizing the robustness of existing DCNs and provide a guideline for designing the new robust and scalable DCN.
doi_str_mv 10.1007/s11227-018-2402-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088795955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088795955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-451dc5985a39b73e139cbe21b6b45754048391f8ef731876588b5cb441831cfa3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AdTTPJuNOilah4EJduQiZNFOmtjNjbqa2_96UKbhydR-cc7j3Q-ia0VtGqb4DxjjXhDJDuKSc7E7QiCktCJVGnqIRLTglRkl-ji4AVpRSKbQYoc8379Z1syR9h7chQg8Yjpu2T7gJ6aeNX3nEdYMXLjnsQ5Oy8B7ntt10LrpUbwOObdlDagIAdo1b76GGS3RWuTWEq2Mdo4-nx_fpM5m_zl6mD3PixUQmIhVbeFUY5URRahGYKHwZOCsnpVRayfyBKFhlQqUFM3qijCmVL6VkRjBfOTFGN0NuF9vvPkCyq7aP-QiwnBqjC1UolVVsUPnYAsRQ2S7WGxf3llF7YGgHhjYztAeGdpc9fPBA1jbLEP-S_zf9AkzjdQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088795955</pqid></control><display><type>article</type><title>Scaling-up versus scaling-out networking in data centers: a comparative robustness analysis</title><source>2022 ECC(Springer)</source><creator>Shooshtarian, L. ; Safaei, F. ; Tizghadam, A.</creator><creatorcontrib>Shooshtarian, L. ; Safaei, F. ; Tizghadam, A.</creatorcontrib><description>The information and communication technology nowadays more than ever depends on the Internet and cloud computing, so that the data centers (DCs) have been converted to a constitutive unit of the cloud computing. A DC is composed of two primary parts: servers and Data Center Networks (DCNs). Robustness and scalability are two major challenges of the DCNs that are expanded based on two strategies, scale-out, and scale-up. This paper is distinctive from the related studies in two aspects. The first one is to simultaneously focus on both the scalability and the robustness challenges of the DCNs. For this purpose, we will concentrate on the comparison of robustness in the scalable models of these networks. The second one is, despite the previous work that only evaluated the DCN robustness under topological changes, we evaluated the robustness and fault tolerance against three types of unexpected changes in topology, traffic, and COI (community of interest) in the present work. Hence, we have chosen the network criticality (NC) as a graph-theoretic metric for analyzing DCN robustness. Afterward, we compare some structural and spectral graph metrics with NC among some well-known DCNs, and their scale-out and scale-up. Our results are useful to select the appropriate scaling strategy with the goal of maximizing the robustness of existing DCNs and provide a guideline for designing the new robust and scalable DCN.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-018-2402-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cloud computing ; Compilers ; Computer centers ; Computer Science ; Data centers ; Fault tolerance ; Graph theory ; Interpreters ; Processor Architectures ; Programming Languages ; Robustness ; Scaling ; Topology</subject><ispartof>The Journal of supercomputing, 2018-08, Vol.74 (8), p.3950-3974</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-451dc5985a39b73e139cbe21b6b45754048391f8ef731876588b5cb441831cfa3</citedby><cites>FETCH-LOGICAL-c364t-451dc5985a39b73e139cbe21b6b45754048391f8ef731876588b5cb441831cfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-018-2402-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-018-2402-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shooshtarian, L.</creatorcontrib><creatorcontrib>Safaei, F.</creatorcontrib><creatorcontrib>Tizghadam, A.</creatorcontrib><title>Scaling-up versus scaling-out networking in data centers: a comparative robustness analysis</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>The information and communication technology nowadays more than ever depends on the Internet and cloud computing, so that the data centers (DCs) have been converted to a constitutive unit of the cloud computing. A DC is composed of two primary parts: servers and Data Center Networks (DCNs). Robustness and scalability are two major challenges of the DCNs that are expanded based on two strategies, scale-out, and scale-up. This paper is distinctive from the related studies in two aspects. The first one is to simultaneously focus on both the scalability and the robustness challenges of the DCNs. For this purpose, we will concentrate on the comparison of robustness in the scalable models of these networks. The second one is, despite the previous work that only evaluated the DCN robustness under topological changes, we evaluated the robustness and fault tolerance against three types of unexpected changes in topology, traffic, and COI (community of interest) in the present work. Hence, we have chosen the network criticality (NC) as a graph-theoretic metric for analyzing DCN robustness. Afterward, we compare some structural and spectral graph metrics with NC among some well-known DCNs, and their scale-out and scale-up. Our results are useful to select the appropriate scaling strategy with the goal of maximizing the robustness of existing DCNs and provide a guideline for designing the new robust and scalable DCN.</description><subject>Cloud computing</subject><subject>Compilers</subject><subject>Computer centers</subject><subject>Computer Science</subject><subject>Data centers</subject><subject>Fault tolerance</subject><subject>Graph theory</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Robustness</subject><subject>Scaling</subject><subject>Topology</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3AdTTPJuNOilah4EJduQiZNFOmtjNjbqa2_96UKbhydR-cc7j3Q-ia0VtGqb4DxjjXhDJDuKSc7E7QiCktCJVGnqIRLTglRkl-ji4AVpRSKbQYoc8379Z1syR9h7chQg8Yjpu2T7gJ6aeNX3nEdYMXLjnsQ5Oy8B7ntt10LrpUbwOObdlDagIAdo1b76GGS3RWuTWEq2Mdo4-nx_fpM5m_zl6mD3PixUQmIhVbeFUY5URRahGYKHwZOCsnpVRayfyBKFhlQqUFM3qijCmVL6VkRjBfOTFGN0NuF9vvPkCyq7aP-QiwnBqjC1UolVVsUPnYAsRQ2S7WGxf3llF7YGgHhjYztAeGdpc9fPBA1jbLEP-S_zf9AkzjdQM</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Shooshtarian, L.</creator><creator>Safaei, F.</creator><creator>Tizghadam, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Scaling-up versus scaling-out networking in data centers: a comparative robustness analysis</title><author>Shooshtarian, L. ; Safaei, F. ; Tizghadam, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-451dc5985a39b73e139cbe21b6b45754048391f8ef731876588b5cb441831cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cloud computing</topic><topic>Compilers</topic><topic>Computer centers</topic><topic>Computer Science</topic><topic>Data centers</topic><topic>Fault tolerance</topic><topic>Graph theory</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Robustness</topic><topic>Scaling</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shooshtarian, L.</creatorcontrib><creatorcontrib>Safaei, F.</creatorcontrib><creatorcontrib>Tizghadam, A.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shooshtarian, L.</au><au>Safaei, F.</au><au>Tizghadam, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling-up versus scaling-out networking in data centers: a comparative robustness analysis</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>74</volume><issue>8</issue><spage>3950</spage><epage>3974</epage><pages>3950-3974</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>The information and communication technology nowadays more than ever depends on the Internet and cloud computing, so that the data centers (DCs) have been converted to a constitutive unit of the cloud computing. A DC is composed of two primary parts: servers and Data Center Networks (DCNs). Robustness and scalability are two major challenges of the DCNs that are expanded based on two strategies, scale-out, and scale-up. This paper is distinctive from the related studies in two aspects. The first one is to simultaneously focus on both the scalability and the robustness challenges of the DCNs. For this purpose, we will concentrate on the comparison of robustness in the scalable models of these networks. The second one is, despite the previous work that only evaluated the DCN robustness under topological changes, we evaluated the robustness and fault tolerance against three types of unexpected changes in topology, traffic, and COI (community of interest) in the present work. Hence, we have chosen the network criticality (NC) as a graph-theoretic metric for analyzing DCN robustness. Afterward, we compare some structural and spectral graph metrics with NC among some well-known DCNs, and their scale-out and scale-up. Our results are useful to select the appropriate scaling strategy with the goal of maximizing the robustness of existing DCNs and provide a guideline for designing the new robust and scalable DCN.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-018-2402-x</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2018-08, Vol.74 (8), p.3950-3974
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2088795955
source 2022 ECC(Springer)
subjects Cloud computing
Compilers
Computer centers
Computer Science
Data centers
Fault tolerance
Graph theory
Interpreters
Processor Architectures
Programming Languages
Robustness
Scaling
Topology
title Scaling-up versus scaling-out networking in data centers: a comparative robustness analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling-up%20versus%20scaling-out%20networking%20in%20data%20centers:%20a%20comparative%20robustness%20analysis&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Shooshtarian,%20L.&rft.date=2018-08-01&rft.volume=74&rft.issue=8&rft.spage=3950&rft.epage=3974&rft.pages=3950-3974&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-018-2402-x&rft_dat=%3Cproquest_cross%3E2088795955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088795955&rft_id=info:pmid/&rfr_iscdi=true