Highly Doped 3D Graphene Na‐Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient

Conventional graphite anodes can hardly intercalate sodium (Na) ions, which poses a serious challenge for developing Na‐ion batteries. This study details a novel method that involves single‐step laser‐based transformation of urea‐containing polyimide into an expanded 3D graphene anode, with simultan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-08, Vol.8 (23), p.n/a
Hauptverfasser: Zhang, Fan, Alhajji, Eman, Lei, Yongjiu, Kurra, Narendra, Alshareef, Husam N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced energy materials
container_volume 8
creator Zhang, Fan
Alhajji, Eman
Lei, Yongjiu
Kurra, Narendra
Alshareef, Husam N.
description Conventional graphite anodes can hardly intercalate sodium (Na) ions, which poses a serious challenge for developing Na‐ion batteries. This study details a novel method that involves single‐step laser‐based transformation of urea‐containing polyimide into an expanded 3D graphene anode, with simultaneous doping of high concentrations of nitrogen (≈13 at%). The versatile nature of this laser‐scribing approach enables direct bonding of the 3D graphene anode to the current collectors without the need for binders or conductive additives, which presents a clear advantage over chemical or hydrothermal methods. It is shown that these conductive and expanded 3D graphene structures perform exceptionally well as anodes for Na‐ion batteries. Specifically, an initial coulombic efficiency (CE) up to 74% is achieved, which exceeds that of most reported carbonaceous anodes, such as hard carbon and soft carbon. In addition, Na‐ion capacity up to 425 mAh g−1 at 0.1 A g−1 has been achieved with excellent rate capabilities. Further, a capacity of 148 mAh g−1 at a current density of 10 A g−1 is obtained with excellent cycling stability, opening a new direction for the fabrication of 3D graphene anodes directly on current collectors for metal ion battery anodes as well as other potential applications. Laser scribing is used to directly form expanded and highly doped (≈13 at% N) 3D graphene anodes on Cu foil without the need for a binder or conductive filler. The simultaneous graphitization and doping of the 3D graphitic anodes in this process result in exceptional electrochemical storage of Na‐ions.
doi_str_mv 10.1002/aenm.201800353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088720657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088720657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4203-6757cd77725baad8cfd30ae029ba0b50e26a1f74c33858e0bbef3def6b586fa43</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsNRePS94Tp3dzcf2GPsNtQrqOewmk3ZLsqmbFMnNn-Bv9JeYUqlH5zID87wz8BByy2DIAPi9QlsOOTAJIAJxQXosZL4XSh8uz7Pg12RQ1zvoyh8xEKJHcGE226Klk2qPGRUTOndqv0WLdK2-P7-WlaUPqmnQtTS2VYZUt3SlanT0JXVGG7uhz1XRmtJ0u5kpypoaS9emcdUGLY1LbdA2N-QqV0WNg9_eJ2-z6et44a2e5stxvPJSn4PwwiiI0iyKIh5opTKZ5pkAhcBHWoEOAHmoWB75qRAykAhaYy4yzEMdyDBXvuiTu9PdvaveD1g3ya46ONu9TDhIGXEIg6ijhicqdVVdO8yTvTOlcm3CIDnaTI42k7PNLjA6BT5Mge0_dBJP149_2R889nkq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088720657</pqid></control><display><type>article</type><title>Highly Doped 3D Graphene Na‐Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient</title><source>Wiley Journals</source><creator>Zhang, Fan ; Alhajji, Eman ; Lei, Yongjiu ; Kurra, Narendra ; Alshareef, Husam N.</creator><creatorcontrib>Zhang, Fan ; Alhajji, Eman ; Lei, Yongjiu ; Kurra, Narendra ; Alshareef, Husam N.</creatorcontrib><description>Conventional graphite anodes can hardly intercalate sodium (Na) ions, which poses a serious challenge for developing Na‐ion batteries. This study details a novel method that involves single‐step laser‐based transformation of urea‐containing polyimide into an expanded 3D graphene anode, with simultaneous doping of high concentrations of nitrogen (≈13 at%). The versatile nature of this laser‐scribing approach enables direct bonding of the 3D graphene anode to the current collectors without the need for binders or conductive additives, which presents a clear advantage over chemical or hydrothermal methods. It is shown that these conductive and expanded 3D graphene structures perform exceptionally well as anodes for Na‐ion batteries. Specifically, an initial coulombic efficiency (CE) up to 74% is achieved, which exceeds that of most reported carbonaceous anodes, such as hard carbon and soft carbon. In addition, Na‐ion capacity up to 425 mAh g−1 at 0.1 A g−1 has been achieved with excellent rate capabilities. Further, a capacity of 148 mAh g−1 at a current density of 10 A g−1 is obtained with excellent cycling stability, opening a new direction for the fabrication of 3D graphene anodes directly on current collectors for metal ion battery anodes as well as other potential applications. Laser scribing is used to directly form expanded and highly doped (≈13 at% N) 3D graphene anodes on Cu foil without the need for a binder or conductive filler. The simultaneous graphitization and doping of the 3D graphitic anodes in this process result in exceptional electrochemical storage of Na‐ions.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201800353</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>3D graphene ; Accumulators ; Additives ; Anodes ; Carbon ; Collectors ; Graphene ; Lasers ; laser‐scribed graphene ; Organic chemistry ; Sodium ; Sodium-ion batteries ; sodium‐ion battery anodes</subject><ispartof>Advanced energy materials, 2018-08, Vol.8 (23), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4203-6757cd77725baad8cfd30ae029ba0b50e26a1f74c33858e0bbef3def6b586fa43</citedby><cites>FETCH-LOGICAL-c4203-6757cd77725baad8cfd30ae029ba0b50e26a1f74c33858e0bbef3def6b586fa43</cites><orcidid>0000-0001-5029-2142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201800353$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201800353$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Alhajji, Eman</creatorcontrib><creatorcontrib>Lei, Yongjiu</creatorcontrib><creatorcontrib>Kurra, Narendra</creatorcontrib><creatorcontrib>Alshareef, Husam N.</creatorcontrib><title>Highly Doped 3D Graphene Na‐Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient</title><title>Advanced energy materials</title><description>Conventional graphite anodes can hardly intercalate sodium (Na) ions, which poses a serious challenge for developing Na‐ion batteries. This study details a novel method that involves single‐step laser‐based transformation of urea‐containing polyimide into an expanded 3D graphene anode, with simultaneous doping of high concentrations of nitrogen (≈13 at%). The versatile nature of this laser‐scribing approach enables direct bonding of the 3D graphene anode to the current collectors without the need for binders or conductive additives, which presents a clear advantage over chemical or hydrothermal methods. It is shown that these conductive and expanded 3D graphene structures perform exceptionally well as anodes for Na‐ion batteries. Specifically, an initial coulombic efficiency (CE) up to 74% is achieved, which exceeds that of most reported carbonaceous anodes, such as hard carbon and soft carbon. In addition, Na‐ion capacity up to 425 mAh g−1 at 0.1 A g−1 has been achieved with excellent rate capabilities. Further, a capacity of 148 mAh g−1 at a current density of 10 A g−1 is obtained with excellent cycling stability, opening a new direction for the fabrication of 3D graphene anodes directly on current collectors for metal ion battery anodes as well as other potential applications. Laser scribing is used to directly form expanded and highly doped (≈13 at% N) 3D graphene anodes on Cu foil without the need for a binder or conductive filler. The simultaneous graphitization and doping of the 3D graphitic anodes in this process result in exceptional electrochemical storage of Na‐ions.</description><subject>3D graphene</subject><subject>Accumulators</subject><subject>Additives</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Collectors</subject><subject>Graphene</subject><subject>Lasers</subject><subject>laser‐scribed graphene</subject><subject>Organic chemistry</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>sodium‐ion battery anodes</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsNRePS94Tp3dzcf2GPsNtQrqOewmk3ZLsqmbFMnNn-Bv9JeYUqlH5zID87wz8BByy2DIAPi9QlsOOTAJIAJxQXosZL4XSh8uz7Pg12RQ1zvoyh8xEKJHcGE226Klk2qPGRUTOndqv0WLdK2-P7-WlaUPqmnQtTS2VYZUt3SlanT0JXVGG7uhz1XRmtJ0u5kpypoaS9emcdUGLY1LbdA2N-QqV0WNg9_eJ2-z6et44a2e5stxvPJSn4PwwiiI0iyKIh5opTKZ5pkAhcBHWoEOAHmoWB75qRAykAhaYy4yzEMdyDBXvuiTu9PdvaveD1g3ya46ONu9TDhIGXEIg6ijhicqdVVdO8yTvTOlcm3CIDnaTI42k7PNLjA6BT5Mge0_dBJP149_2R889nkq</recordid><startdate>20180816</startdate><enddate>20180816</enddate><creator>Zhang, Fan</creator><creator>Alhajji, Eman</creator><creator>Lei, Yongjiu</creator><creator>Kurra, Narendra</creator><creator>Alshareef, Husam N.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5029-2142</orcidid></search><sort><creationdate>20180816</creationdate><title>Highly Doped 3D Graphene Na‐Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient</title><author>Zhang, Fan ; Alhajji, Eman ; Lei, Yongjiu ; Kurra, Narendra ; Alshareef, Husam N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4203-6757cd77725baad8cfd30ae029ba0b50e26a1f74c33858e0bbef3def6b586fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D graphene</topic><topic>Accumulators</topic><topic>Additives</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Collectors</topic><topic>Graphene</topic><topic>Lasers</topic><topic>laser‐scribed graphene</topic><topic>Organic chemistry</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>sodium‐ion battery anodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Alhajji, Eman</creatorcontrib><creatorcontrib>Lei, Yongjiu</creatorcontrib><creatorcontrib>Kurra, Narendra</creatorcontrib><creatorcontrib>Alshareef, Husam N.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Fan</au><au>Alhajji, Eman</au><au>Lei, Yongjiu</au><au>Kurra, Narendra</au><au>Alshareef, Husam N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Doped 3D Graphene Na‐Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient</atitle><jtitle>Advanced energy materials</jtitle><date>2018-08-16</date><risdate>2018</risdate><volume>8</volume><issue>23</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Conventional graphite anodes can hardly intercalate sodium (Na) ions, which poses a serious challenge for developing Na‐ion batteries. This study details a novel method that involves single‐step laser‐based transformation of urea‐containing polyimide into an expanded 3D graphene anode, with simultaneous doping of high concentrations of nitrogen (≈13 at%). The versatile nature of this laser‐scribing approach enables direct bonding of the 3D graphene anode to the current collectors without the need for binders or conductive additives, which presents a clear advantage over chemical or hydrothermal methods. It is shown that these conductive and expanded 3D graphene structures perform exceptionally well as anodes for Na‐ion batteries. Specifically, an initial coulombic efficiency (CE) up to 74% is achieved, which exceeds that of most reported carbonaceous anodes, such as hard carbon and soft carbon. In addition, Na‐ion capacity up to 425 mAh g−1 at 0.1 A g−1 has been achieved with excellent rate capabilities. Further, a capacity of 148 mAh g−1 at a current density of 10 A g−1 is obtained with excellent cycling stability, opening a new direction for the fabrication of 3D graphene anodes directly on current collectors for metal ion battery anodes as well as other potential applications. Laser scribing is used to directly form expanded and highly doped (≈13 at% N) 3D graphene anodes on Cu foil without the need for a binder or conductive filler. The simultaneous graphitization and doping of the 3D graphitic anodes in this process result in exceptional electrochemical storage of Na‐ions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201800353</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5029-2142</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-08, Vol.8 (23), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2088720657
source Wiley Journals
subjects 3D graphene
Accumulators
Additives
Anodes
Carbon
Collectors
Graphene
Lasers
laser‐scribed graphene
Organic chemistry
Sodium
Sodium-ion batteries
sodium‐ion battery anodes
title Highly Doped 3D Graphene Na‐Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Doped%203D%20Graphene%20Na%E2%80%90Ion%20Battery%20Anode%20by%20Laser%20Scribing%20Polyimide%20Films%20in%20Nitrogen%20Ambient&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhang,%20Fan&rft.date=2018-08-16&rft.volume=8&rft.issue=23&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201800353&rft_dat=%3Cproquest_cross%3E2088720657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088720657&rft_id=info:pmid/&rfr_iscdi=true