Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing

The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Yunsheng, Lu, Xinghua
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1967
creator Chen, Yunsheng
Lu, Xinghua
description The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.
doi_str_mv 10.1063/1.5039136
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2088685612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088685612</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1686-c803fa62d3c142494c19119e5f99005ceb6b99fffe734c196a29a5a8f05e614f3</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK4e_AYFb0LXTNKkyVEW_8GiFwVvIZsma5Y0rWkr6Kc36y6eZpjf483jIXQJeAGY0xtYMEwlUH6EZsAYlDUHfoxmGMuqJBV9P0Vnw7DFmMi6FjMUn6fWJm90KAbfTkGPvotF54optjpG2xQ640y_7Ic3weZ7Y1NhbByTd9Mmk9DprIpN0fWjb_3Pv0XrQ_Bx88f6oGPez9GJ02GwF4c5R2_3d6_Lx3L18vC0vF2VPXDBSyMwdZqThhqoSCUrAxJAWuakxJgZu-ZrKZ1ztqY7xjWRmmnhMLMcKkfn6Grv26fuc7LDqLbdlGJ-qQgWggvGgWTV9V41GD_-xVZ98q1O3wqw2vWpQB36pL9o42iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088685612</pqid></control><display><type>conference_proceeding</type><title>Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing</title><source>AIP Journals Complete</source><creator>Chen, Yunsheng ; Lu, Xinghua</creator><contributor>Fang, Dajing ; Zhu, Shanhong ; Kuang, Tao</contributor><creatorcontrib>Chen, Yunsheng ; Lu, Xinghua ; Fang, Dajing ; Zhu, Shanhong ; Kuang, Tao</creatorcontrib><description>The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5039136</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aircraft components ; Airframes ; Automotive parts ; Centrifugal compressors ; Centrifugal force ; Compression tests ; Compressive strength ; Computer simulation ; Crack propagation ; Cutting parameters ; Cutting wear ; Discrete element method ; Fatigue failure ; Finite element method ; Fuselages ; Mechanical components ; Meshing ; Military technology ; Optimization ; Planing ; Rotor blades ; Simulation ; Tool wear ; Unmanned aerial vehicles ; Vibration analysis</subject><ispartof>AIP conference proceedings, 2018, Vol.1967 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5039136$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Fang, Dajing</contributor><contributor>Zhu, Shanhong</contributor><contributor>Kuang, Tao</contributor><creatorcontrib>Chen, Yunsheng</creatorcontrib><creatorcontrib>Lu, Xinghua</creatorcontrib><title>Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing</title><title>AIP conference proceedings</title><description>The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.</description><subject>Aircraft components</subject><subject>Airframes</subject><subject>Automotive parts</subject><subject>Centrifugal compressors</subject><subject>Centrifugal force</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Cutting parameters</subject><subject>Cutting wear</subject><subject>Discrete element method</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Fuselages</subject><subject>Mechanical components</subject><subject>Meshing</subject><subject>Military technology</subject><subject>Optimization</subject><subject>Planing</subject><subject>Rotor blades</subject><subject>Simulation</subject><subject>Tool wear</subject><subject>Unmanned aerial vehicles</subject><subject>Vibration analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kE9LxDAQxYMouK4e_AYFb0LXTNKkyVEW_8GiFwVvIZsma5Y0rWkr6Kc36y6eZpjf483jIXQJeAGY0xtYMEwlUH6EZsAYlDUHfoxmGMuqJBV9P0Vnw7DFmMi6FjMUn6fWJm90KAbfTkGPvotF54optjpG2xQ640y_7Ic3weZ7Y1NhbByTd9Mmk9DprIpN0fWjb_3Pv0XrQ_Bx88f6oGPez9GJ02GwF4c5R2_3d6_Lx3L18vC0vF2VPXDBSyMwdZqThhqoSCUrAxJAWuakxJgZu-ZrKZ1ztqY7xjWRmmnhMLMcKkfn6Grv26fuc7LDqLbdlGJ-qQgWggvGgWTV9V41GD_-xVZ98q1O3wqw2vWpQB36pL9o42iw</recordid><startdate>20180523</startdate><enddate>20180523</enddate><creator>Chen, Yunsheng</creator><creator>Lu, Xinghua</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180523</creationdate><title>Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing</title><author>Chen, Yunsheng ; Lu, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1686-c803fa62d3c142494c19119e5f99005ceb6b99fffe734c196a29a5a8f05e614f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft components</topic><topic>Airframes</topic><topic>Automotive parts</topic><topic>Centrifugal compressors</topic><topic>Centrifugal force</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Cutting parameters</topic><topic>Cutting wear</topic><topic>Discrete element method</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Fuselages</topic><topic>Mechanical components</topic><topic>Meshing</topic><topic>Military technology</topic><topic>Optimization</topic><topic>Planing</topic><topic>Rotor blades</topic><topic>Simulation</topic><topic>Tool wear</topic><topic>Unmanned aerial vehicles</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yunsheng</creatorcontrib><creatorcontrib>Lu, Xinghua</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yunsheng</au><au>Lu, Xinghua</au><au>Fang, Dajing</au><au>Zhu, Shanhong</au><au>Kuang, Tao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing</atitle><btitle>AIP conference proceedings</btitle><date>2018-05-23</date><risdate>2018</risdate><volume>1967</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5039136</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1967 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2088685612
source AIP Journals Complete
subjects Aircraft components
Airframes
Automotive parts
Centrifugal compressors
Centrifugal force
Compression tests
Compressive strength
Computer simulation
Crack propagation
Cutting parameters
Cutting wear
Discrete element method
Fatigue failure
Finite element method
Fuselages
Mechanical components
Meshing
Military technology
Optimization
Planing
Rotor blades
Simulation
Tool wear
Unmanned aerial vehicles
Vibration analysis
title Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20of%20unmanned%20aerial%20vehicle%20under%20centrifugal%20load%20and%20optimization%20of%20milling%20and%20planing&rft.btitle=AIP%20conference%20proceedings&rft.au=Chen,%20Yunsheng&rft.date=2018-05-23&rft.volume=1967&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5039136&rft_dat=%3Cproquest_scita%3E2088685612%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088685612&rft_id=info:pmid/&rfr_iscdi=true