Pinning and critical currents of heterogeneous superconductors in different structural states
The critical currents of a composite Nb3Sn-based superconductor are found to increase as a result of low intensity ultrasonic interactions. In terms of a mechanism for interactions of vortices with grain boundaries based on electron scattering at the boundaries, a reduction in the compressive forces...
Gespeichert in:
Veröffentlicht in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2018-03, Vol.44 (3), p.189-193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The critical currents of a composite Nb3Sn-based superconductor are found to increase as a result of low intensity ultrasonic interactions. In terms of a mechanism for interactions of vortices with grain boundaries based on electron scattering at the boundaries, a reduction in the compressive forces in an Nb3Sn layer during ultrasonic interactions leads to an increase in the elementary pinning force because of a reduction in the coherence length and increases in the superconducting transition temperature and the electron specific heat. It is shown that for single-crystal niobium with a high density of uniformly distributed dislocations in fields close to Hc2, the field dependence of the volume pinning force corresponds to a system of effective point centers that satisfy a rarefaction criterion. The first order interaction of a vortex with these kinds of pinning centers greatly exceeds the characteristic for interactions of the vortex with single helical and edge dislocations. |
---|---|
ISSN: | 1063-777X 1090-6517 |
DOI: | 10.1063/1.5024533 |