Note: A contraction channel design for planar shock wave enhancement

A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-05, Vol.89 (5), p.056104-056104
Hauptverfasser: Zhan, Dongwen, Li, Zhufei, Yang, Jianting, Zhu, Yujian, Yang, Jiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 056104
container_issue 5
container_start_page 056104
container_title Review of scientific instruments
container_volume 89
creator Zhan, Dongwen
Li, Zhufei
Yang, Jianting
Zhu, Yujian
Yang, Jiming
description A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again “bent” back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.
doi_str_mv 10.1063/1.5025223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088682114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050484932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-1ba8db95de1ebfbc663384ec69fd8581cdf27ea706ba08dea0220aa6b947ef263</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgipvTg_-ABLyo0JmkbZp6G_MnDL3ouaTpq-tsk5q0E_97MzYnKPgu7_Lh-x5fhI4pGVPCw0s6jgmLGQt30JASkQYJZ-EuGhISRgFPIjFAB84tiJ-Y0n00YKngkUjoEF0_mg6u8AQrozsrVVcZjdVcag01LsBVrxqXxuK2llpa7OZGveEPuQQM2isFDejuEO2VsnZwtNkj9HJ78zy9D2ZPdw_TySxQ_mAX0FyKIk_jAijkZa44D0MRgeJpWYhYUFWULAGZEJ5LIgqQhDEiJc_TKIGS8XCEzta5rTXvPbguayqnoPa_geldxkhMIhGlIfP09BddmN5q_51XQnDBKI28Ol8rZY1zFsqstVUj7WdGSbaqNqPZplpvTzaJfd5AsZXfXXpwsQZOVZ1cFbk1S2N_krK2KP_Df09_ATcSjmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088682114</pqid></control><display><type>article</type><title>Note: A contraction channel design for planar shock wave enhancement</title><source>Alma/SFX Local Collection</source><source>AIP Journals (American Institute of Physics)</source><creator>Zhan, Dongwen ; Li, Zhufei ; Yang, Jianting ; Zhu, Yujian ; Yang, Jiming</creator><creatorcontrib>Zhan, Dongwen ; Li, Zhufei ; Yang, Jianting ; Zhu, Yujian ; Yang, Jiming</creatorcontrib><description>A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again “bent” back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5025223</identifier><identifier>PMID: 29864871</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Design ; High temperature gases ; Numerical methods ; Reflected waves ; Scientific apparatus &amp; instruments ; Shock waves ; Uniform flow</subject><ispartof>Review of scientific instruments, 2018-05, Vol.89 (5), p.056104-056104</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-1ba8db95de1ebfbc663384ec69fd8581cdf27ea706ba08dea0220aa6b947ef263</citedby><cites>FETCH-LOGICAL-c298t-1ba8db95de1ebfbc663384ec69fd8581cdf27ea706ba08dea0220aa6b947ef263</cites><orcidid>0000-0003-4740-489X ; 0000-0002-9260-9256 ; 0000-0002-5730-6591 ; 0000000257306591 ; 0000000292609256 ; 000000034740489X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5025223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29864871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Dongwen</creatorcontrib><creatorcontrib>Li, Zhufei</creatorcontrib><creatorcontrib>Yang, Jianting</creatorcontrib><creatorcontrib>Zhu, Yujian</creatorcontrib><creatorcontrib>Yang, Jiming</creatorcontrib><title>Note: A contraction channel design for planar shock wave enhancement</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again “bent” back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.</description><subject>Design</subject><subject>High temperature gases</subject><subject>Numerical methods</subject><subject>Reflected waves</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Shock waves</subject><subject>Uniform flow</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgipvTg_-ABLyo0JmkbZp6G_MnDL3ouaTpq-tsk5q0E_97MzYnKPgu7_Lh-x5fhI4pGVPCw0s6jgmLGQt30JASkQYJZ-EuGhISRgFPIjFAB84tiJ-Y0n00YKngkUjoEF0_mg6u8AQrozsrVVcZjdVcag01LsBVrxqXxuK2llpa7OZGveEPuQQM2isFDejuEO2VsnZwtNkj9HJ78zy9D2ZPdw_TySxQ_mAX0FyKIk_jAijkZa44D0MRgeJpWYhYUFWULAGZEJ5LIgqQhDEiJc_TKIGS8XCEzta5rTXvPbguayqnoPa_geldxkhMIhGlIfP09BddmN5q_51XQnDBKI28Ol8rZY1zFsqstVUj7WdGSbaqNqPZplpvTzaJfd5AsZXfXXpwsQZOVZ1cFbk1S2N_krK2KP_Df09_ATcSjmw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Zhan, Dongwen</creator><creator>Li, Zhufei</creator><creator>Yang, Jianting</creator><creator>Zhu, Yujian</creator><creator>Yang, Jiming</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4740-489X</orcidid><orcidid>https://orcid.org/0000-0002-9260-9256</orcidid><orcidid>https://orcid.org/0000-0002-5730-6591</orcidid><orcidid>https://orcid.org/0000000257306591</orcidid><orcidid>https://orcid.org/0000000292609256</orcidid><orcidid>https://orcid.org/000000034740489X</orcidid></search><sort><creationdate>201805</creationdate><title>Note: A contraction channel design for planar shock wave enhancement</title><author>Zhan, Dongwen ; Li, Zhufei ; Yang, Jianting ; Zhu, Yujian ; Yang, Jiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-1ba8db95de1ebfbc663384ec69fd8581cdf27ea706ba08dea0220aa6b947ef263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Design</topic><topic>High temperature gases</topic><topic>Numerical methods</topic><topic>Reflected waves</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Shock waves</topic><topic>Uniform flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Dongwen</creatorcontrib><creatorcontrib>Li, Zhufei</creatorcontrib><creatorcontrib>Yang, Jianting</creatorcontrib><creatorcontrib>Zhu, Yujian</creatorcontrib><creatorcontrib>Yang, Jiming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Dongwen</au><au>Li, Zhufei</au><au>Yang, Jianting</au><au>Zhu, Yujian</au><au>Yang, Jiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note: A contraction channel design for planar shock wave enhancement</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-05</date><risdate>2018</risdate><volume>89</volume><issue>5</issue><spage>056104</spage><epage>056104</epage><pages>056104-056104</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again “bent” back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29864871</pmid><doi>10.1063/1.5025223</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0003-4740-489X</orcidid><orcidid>https://orcid.org/0000-0002-9260-9256</orcidid><orcidid>https://orcid.org/0000-0002-5730-6591</orcidid><orcidid>https://orcid.org/0000000257306591</orcidid><orcidid>https://orcid.org/0000000292609256</orcidid><orcidid>https://orcid.org/000000034740489X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2018-05, Vol.89 (5), p.056104-056104
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_journals_2088682114
source Alma/SFX Local Collection; AIP Journals (American Institute of Physics)
subjects Design
High temperature gases
Numerical methods
Reflected waves
Scientific apparatus & instruments
Shock waves
Uniform flow
title Note: A contraction channel design for planar shock wave enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note:%20A%20contraction%20channel%20design%20for%20planar%20shock%20wave%20enhancement&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Zhan,%20Dongwen&rft.date=2018-05&rft.volume=89&rft.issue=5&rft.spage=056104&rft.epage=056104&rft.pages=056104-056104&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5025223&rft_dat=%3Cproquest_cross%3E2050484932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088682114&rft_id=info:pmid/29864871&rfr_iscdi=true