Note: A contraction channel design for planar shock wave enhancement
A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of th...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2018-05, Vol.89 (5), p.056104-056104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 056104 |
---|---|
container_issue | 5 |
container_start_page | 056104 |
container_title | Review of scientific instruments |
container_volume | 89 |
creator | Zhan, Dongwen Li, Zhufei Yang, Jianting Zhu, Yujian Yang, Jiming |
description | A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again “bent” back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind. |
doi_str_mv | 10.1063/1.5025223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088682114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050484932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-1ba8db95de1ebfbc663384ec69fd8581cdf27ea706ba08dea0220aa6b947ef263</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgipvTg_-ABLyo0JmkbZp6G_MnDL3ouaTpq-tsk5q0E_97MzYnKPgu7_Lh-x5fhI4pGVPCw0s6jgmLGQt30JASkQYJZ-EuGhISRgFPIjFAB84tiJ-Y0n00YKngkUjoEF0_mg6u8AQrozsrVVcZjdVcag01LsBVrxqXxuK2llpa7OZGveEPuQQM2isFDejuEO2VsnZwtNkj9HJ78zy9D2ZPdw_TySxQ_mAX0FyKIk_jAijkZa44D0MRgeJpWYhYUFWULAGZEJ5LIgqQhDEiJc_TKIGS8XCEzta5rTXvPbguayqnoPa_geldxkhMIhGlIfP09BddmN5q_51XQnDBKI28Ol8rZY1zFsqstVUj7WdGSbaqNqPZplpvTzaJfd5AsZXfXXpwsQZOVZ1cFbk1S2N_krK2KP_Df09_ATcSjmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088682114</pqid></control><display><type>article</type><title>Note: A contraction channel design for planar shock wave enhancement</title><source>Alma/SFX Local Collection</source><source>AIP Journals (American Institute of Physics)</source><creator>Zhan, Dongwen ; Li, Zhufei ; Yang, Jianting ; Zhu, Yujian ; Yang, Jiming</creator><creatorcontrib>Zhan, Dongwen ; Li, Zhufei ; Yang, Jianting ; Zhu, Yujian ; Yang, Jiming</creatorcontrib><description>A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again “bent” back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5025223</identifier><identifier>PMID: 29864871</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Design ; High temperature gases ; Numerical methods ; Reflected waves ; Scientific apparatus & instruments ; Shock waves ; Uniform flow</subject><ispartof>Review of scientific instruments, 2018-05, Vol.89 (5), p.056104-056104</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-1ba8db95de1ebfbc663384ec69fd8581cdf27ea706ba08dea0220aa6b947ef263</citedby><cites>FETCH-LOGICAL-c298t-1ba8db95de1ebfbc663384ec69fd8581cdf27ea706ba08dea0220aa6b947ef263</cites><orcidid>0000-0003-4740-489X ; 0000-0002-9260-9256 ; 0000-0002-5730-6591 ; 0000000257306591 ; 0000000292609256 ; 000000034740489X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5025223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29864871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Dongwen</creatorcontrib><creatorcontrib>Li, Zhufei</creatorcontrib><creatorcontrib>Yang, Jianting</creatorcontrib><creatorcontrib>Zhu, Yujian</creatorcontrib><creatorcontrib>Yang, Jiming</creatorcontrib><title>Note: A contraction channel design for planar shock wave enhancement</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again “bent” back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.</description><subject>Design</subject><subject>High temperature gases</subject><subject>Numerical methods</subject><subject>Reflected waves</subject><subject>Scientific apparatus & instruments</subject><subject>Shock waves</subject><subject>Uniform flow</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgipvTg_-ABLyo0JmkbZp6G_MnDL3ouaTpq-tsk5q0E_97MzYnKPgu7_Lh-x5fhI4pGVPCw0s6jgmLGQt30JASkQYJZ-EuGhISRgFPIjFAB84tiJ-Y0n00YKngkUjoEF0_mg6u8AQrozsrVVcZjdVcag01LsBVrxqXxuK2llpa7OZGveEPuQQM2isFDejuEO2VsnZwtNkj9HJ78zy9D2ZPdw_TySxQ_mAX0FyKIk_jAijkZa44D0MRgeJpWYhYUFWULAGZEJ5LIgqQhDEiJc_TKIGS8XCEzta5rTXvPbguayqnoPa_geldxkhMIhGlIfP09BddmN5q_51XQnDBKI28Ol8rZY1zFsqstVUj7WdGSbaqNqPZplpvTzaJfd5AsZXfXXpwsQZOVZ1cFbk1S2N_krK2KP_Df09_ATcSjmw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Zhan, Dongwen</creator><creator>Li, Zhufei</creator><creator>Yang, Jianting</creator><creator>Zhu, Yujian</creator><creator>Yang, Jiming</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4740-489X</orcidid><orcidid>https://orcid.org/0000-0002-9260-9256</orcidid><orcidid>https://orcid.org/0000-0002-5730-6591</orcidid><orcidid>https://orcid.org/0000000257306591</orcidid><orcidid>https://orcid.org/0000000292609256</orcidid><orcidid>https://orcid.org/000000034740489X</orcidid></search><sort><creationdate>201805</creationdate><title>Note: A contraction channel design for planar shock wave enhancement</title><author>Zhan, Dongwen ; Li, Zhufei ; Yang, Jianting ; Zhu, Yujian ; Yang, Jiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-1ba8db95de1ebfbc663384ec69fd8581cdf27ea706ba08dea0220aa6b947ef263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Design</topic><topic>High temperature gases</topic><topic>Numerical methods</topic><topic>Reflected waves</topic><topic>Scientific apparatus & instruments</topic><topic>Shock waves</topic><topic>Uniform flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Dongwen</creatorcontrib><creatorcontrib>Li, Zhufei</creatorcontrib><creatorcontrib>Yang, Jianting</creatorcontrib><creatorcontrib>Zhu, Yujian</creatorcontrib><creatorcontrib>Yang, Jiming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Dongwen</au><au>Li, Zhufei</au><au>Yang, Jianting</au><au>Zhu, Yujian</au><au>Yang, Jiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Note: A contraction channel design for planar shock wave enhancement</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2018-05</date><risdate>2018</risdate><volume>89</volume><issue>5</issue><spage>056104</spage><epage>056104</epage><pages>056104-056104</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again “bent” back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29864871</pmid><doi>10.1063/1.5025223</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0003-4740-489X</orcidid><orcidid>https://orcid.org/0000-0002-9260-9256</orcidid><orcidid>https://orcid.org/0000-0002-5730-6591</orcidid><orcidid>https://orcid.org/0000000257306591</orcidid><orcidid>https://orcid.org/0000000292609256</orcidid><orcidid>https://orcid.org/000000034740489X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2018-05, Vol.89 (5), p.056104-056104 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_proquest_journals_2088682114 |
source | Alma/SFX Local Collection; AIP Journals (American Institute of Physics) |
subjects | Design High temperature gases Numerical methods Reflected waves Scientific apparatus & instruments Shock waves Uniform flow |
title | Note: A contraction channel design for planar shock wave enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Note:%20A%20contraction%20channel%20design%20for%20planar%20shock%20wave%20enhancement&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Zhan,%20Dongwen&rft.date=2018-05&rft.volume=89&rft.issue=5&rft.spage=056104&rft.epage=056104&rft.pages=056104-056104&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5025223&rft_dat=%3Cproquest_cross%3E2050484932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088682114&rft_id=info:pmid/29864871&rfr_iscdi=true |