Long Distance Contribution to \(s \to d\gamma\) and Implications for \(\Omega^-\to \Xi ^-\gamma, B_s \to B_d^\gamma\) and \(b \to s\gamma\)
We estimate the long distance (LD) contribution to the magnetic part of the \(s \to d\gamma\) transition using the Vector Meson Dominance approximation \((V=\rho,\omega,\psi_i)\). We find that this contribution may be significantly larger than the short distance (SD) contribution to \(s \to d\gamma\...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1995-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Eilam, G Ioannissian, A Mendel, R R Singer, P |
description | We estimate the long distance (LD) contribution to the magnetic part of the \(s \to d\gamma\) transition using the Vector Meson Dominance approximation \((V=\rho,\omega,\psi_i)\). We find that this contribution may be significantly larger than the short distance (SD) contribution to \(s \to d\gamma\) and could possibly saturate the present experimental upper bound on the \(\Omega^-\to \Xi^-\gamma\) decay rate, \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} \simeq 3.7\times10^{-9}\)eV. For the decay \(B_s \to B^*_d\gamma\), which is driven by \(s \to d\gamma\) as well, we obtain an upper bound on the branching ratio \(BR(B_s \to B_d^*\gamma) |
doi_str_mv | 10.48550/arxiv.9507267 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088402285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088402285</sourcerecordid><originalsourceid>FETCH-proquest_journals_20884022853</originalsourceid><addsrcrecordid>eNqNjE1rAjEYhINQcKlePb_gZQuuxuymple_UCh46aGHYIjuukTcxCZZ8T_4pxu_Dr31NMPMM4NQZ4j7GaMUD6Q9q1P_g-IReR81UETSdJiwjJAmaju3xxiHnFCaRujyaXQJU-W81NsCJkZ7qza1V0aDN8BjBzxozktZVZK_gdQ5LKvjQW3lFXKwMzZgfFUVpVwnV5h_KwjutujBWNwvxiJf_3nh8eZWuGfaQi87eXBF-6GvqDuffU0WydGan7pwXuxNbXWoBMGMZZgQRtP_Ub8ZOlb1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088402285</pqid></control><display><type>article</type><title>Long Distance Contribution to \(s \to d\gamma\) and Implications for \(\Omega^-\to \Xi ^-\gamma, B_s \to B_d^\gamma\) and \(b \to s\gamma\)</title><source>Freely Accessible Journals</source><creator>Eilam, G ; Ioannissian, A ; Mendel, R R ; Singer, P</creator><creatorcontrib>Eilam, G ; Ioannissian, A ; Mendel, R R ; Singer, P</creatorcontrib><description>We estimate the long distance (LD) contribution to the magnetic part of the \(s \to d\gamma\) transition using the Vector Meson Dominance approximation \((V=\rho,\omega,\psi_i)\). We find that this contribution may be significantly larger than the short distance (SD) contribution to \(s \to d\gamma\) and could possibly saturate the present experimental upper bound on the \(\Omega^-\to \Xi^-\gamma\) decay rate, \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} \simeq 3.7\times10^{-9}\)eV. For the decay \(B_s \to B^*_d\gamma\), which is driven by \(s \to d\gamma\) as well, we obtain an upper bound on the branching ratio \(BR(B_s \to B_d^*\gamma)<3\times10^{-8}\) from \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}\). Barring the possibility that the Quantum Chromodynamics coefficient \(a_2(m_s)\) be much smaller than 1, \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}\) also implies the approximate relation \(\frac{2}{3} \sum_i \frac{g^2_{\psi_i}(0)}{m^2_{\psi_i}} \simeq \frac{1}{2} \frac{g^2_\rho(0)}{m^2_\rho} + \frac{1}{6}\frac{g^2_\omega(0)}{m^2_\omega}\). This relation agrees quantitatively with a recent independent estimate of the l.h.s. by Deshpande et al., confirming that the LD contributions to \(b \to s\gamma\) are small. We find that these amount to an increase of \((4\pm2)\%\) in the magnitude of the \(b \to s \gamma\) transition amplitude, relative to the SD contribution alone.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9507267</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decay rate ; Quantum chromodynamics ; Upper bounds ; Vector mesons</subject><ispartof>arXiv.org, 1995-07</ispartof><rights>1995. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781,27906</link.rule.ids></links><search><creatorcontrib>Eilam, G</creatorcontrib><creatorcontrib>Ioannissian, A</creatorcontrib><creatorcontrib>Mendel, R R</creatorcontrib><creatorcontrib>Singer, P</creatorcontrib><title>Long Distance Contribution to \(s \to d\gamma\) and Implications for \(\Omega^-\to \Xi ^-\gamma, B_s \to B_d^\gamma\) and \(b \to s\gamma\)</title><title>arXiv.org</title><description>We estimate the long distance (LD) contribution to the magnetic part of the \(s \to d\gamma\) transition using the Vector Meson Dominance approximation \((V=\rho,\omega,\psi_i)\). We find that this contribution may be significantly larger than the short distance (SD) contribution to \(s \to d\gamma\) and could possibly saturate the present experimental upper bound on the \(\Omega^-\to \Xi^-\gamma\) decay rate, \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} \simeq 3.7\times10^{-9}\)eV. For the decay \(B_s \to B^*_d\gamma\), which is driven by \(s \to d\gamma\) as well, we obtain an upper bound on the branching ratio \(BR(B_s \to B_d^*\gamma)<3\times10^{-8}\) from \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}\). Barring the possibility that the Quantum Chromodynamics coefficient \(a_2(m_s)\) be much smaller than 1, \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}\) also implies the approximate relation \(\frac{2}{3} \sum_i \frac{g^2_{\psi_i}(0)}{m^2_{\psi_i}} \simeq \frac{1}{2} \frac{g^2_\rho(0)}{m^2_\rho} + \frac{1}{6}\frac{g^2_\omega(0)}{m^2_\omega}\). This relation agrees quantitatively with a recent independent estimate of the l.h.s. by Deshpande et al., confirming that the LD contributions to \(b \to s\gamma\) are small. We find that these amount to an increase of \((4\pm2)\%\) in the magnitude of the \(b \to s \gamma\) transition amplitude, relative to the SD contribution alone.</description><subject>Decay rate</subject><subject>Quantum chromodynamics</subject><subject>Upper bounds</subject><subject>Vector mesons</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjE1rAjEYhINQcKlePb_gZQuuxuymple_UCh46aGHYIjuukTcxCZZ8T_4pxu_Dr31NMPMM4NQZ4j7GaMUD6Q9q1P_g-IReR81UETSdJiwjJAmaju3xxiHnFCaRujyaXQJU-W81NsCJkZ7qza1V0aDN8BjBzxozktZVZK_gdQ5LKvjQW3lFXKwMzZgfFUVpVwnV5h_KwjutujBWNwvxiJf_3nh8eZWuGfaQi87eXBF-6GvqDuffU0WydGan7pwXuxNbXWoBMGMZZgQRtP_Ub8ZOlb1</recordid><startdate>19950709</startdate><enddate>19950709</enddate><creator>Eilam, G</creator><creator>Ioannissian, A</creator><creator>Mendel, R R</creator><creator>Singer, P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19950709</creationdate><title>Long Distance Contribution to \(s \to d\gamma\) and Implications for \(\Omega^-\to \Xi ^-\gamma, B_s \to B_d^\gamma\) and \(b \to s\gamma\)</title><author>Eilam, G ; Ioannissian, A ; Mendel, R R ; Singer, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20884022853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Decay rate</topic><topic>Quantum chromodynamics</topic><topic>Upper bounds</topic><topic>Vector mesons</topic><toplevel>online_resources</toplevel><creatorcontrib>Eilam, G</creatorcontrib><creatorcontrib>Ioannissian, A</creatorcontrib><creatorcontrib>Mendel, R R</creatorcontrib><creatorcontrib>Singer, P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eilam, G</au><au>Ioannissian, A</au><au>Mendel, R R</au><au>Singer, P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Long Distance Contribution to \(s \to d\gamma\) and Implications for \(\Omega^-\to \Xi ^-\gamma, B_s \to B_d^\gamma\) and \(b \to s\gamma\)</atitle><jtitle>arXiv.org</jtitle><date>1995-07-09</date><risdate>1995</risdate><eissn>2331-8422</eissn><abstract>We estimate the long distance (LD) contribution to the magnetic part of the \(s \to d\gamma\) transition using the Vector Meson Dominance approximation \((V=\rho,\omega,\psi_i)\). We find that this contribution may be significantly larger than the short distance (SD) contribution to \(s \to d\gamma\) and could possibly saturate the present experimental upper bound on the \(\Omega^-\to \Xi^-\gamma\) decay rate, \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma} \simeq 3.7\times10^{-9}\)eV. For the decay \(B_s \to B^*_d\gamma\), which is driven by \(s \to d\gamma\) as well, we obtain an upper bound on the branching ratio \(BR(B_s \to B_d^*\gamma)<3\times10^{-8}\) from \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}\). Barring the possibility that the Quantum Chromodynamics coefficient \(a_2(m_s)\) be much smaller than 1, \(\Gamma^{\rm MAX}_{\Omega^-\to \Xi^-\gamma}\) also implies the approximate relation \(\frac{2}{3} \sum_i \frac{g^2_{\psi_i}(0)}{m^2_{\psi_i}} \simeq \frac{1}{2} \frac{g^2_\rho(0)}{m^2_\rho} + \frac{1}{6}\frac{g^2_\omega(0)}{m^2_\omega}\). This relation agrees quantitatively with a recent independent estimate of the l.h.s. by Deshpande et al., confirming that the LD contributions to \(b \to s\gamma\) are small. We find that these amount to an increase of \((4\pm2)\%\) in the magnitude of the \(b \to s \gamma\) transition amplitude, relative to the SD contribution alone.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9507267</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 1995-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2088402285 |
source | Freely Accessible Journals |
subjects | Decay rate Quantum chromodynamics Upper bounds Vector mesons |
title | Long Distance Contribution to \(s \to d\gamma\) and Implications for \(\Omega^-\to \Xi ^-\gamma, B_s \to B_d^\gamma\) and \(b \to s\gamma\) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Long%20Distance%20Contribution%20to%20%5C(s%20%5Cto%20d%5Cgamma%5C)%20and%20Implications%20for%20%5C(%5COmega%5E-%5Cto%20%5CXi%20%5E-%5Cgamma,%20B_s%20%5Cto%20B_d%5E%5Cgamma%5C)%20and%20%5C(b%20%5Cto%20s%5Cgamma%5C)&rft.jtitle=arXiv.org&rft.au=Eilam,%20G&rft.date=1995-07-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9507267&rft_dat=%3Cproquest%3E2088402285%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088402285&rft_id=info:pmid/&rfr_iscdi=true |