Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics

The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-05, Vol.112 (22)
Hauptverfasser: Ali, T., Polakowski, P., Riedel, S., Büttner, T., Kämpfe, T., Rudolph, M., Pätzold, B., Seidel, K., Löhr, D., Hoffmann, R., Czernohorsky, M., Kühnel, K., Thrun, X., Hanisch, N., Steinke, P., Calvo, J., Müller, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Applied physics letters
container_volume 112
creator Ali, T.
Polakowski, P.
Riedel, S.
Büttner, T.
Kämpfe, T.
Rudolph, M.
Pätzold, B.
Seidel, K.
Löhr, D.
Hoffmann, R.
Czernohorsky, M.
Kühnel, K.
Thrun, X.
Hanisch, N.
Steinke, P.
Calvo, J.
Müller, J.
description The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.
doi_str_mv 10.1063/1.5029324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088357396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088357396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-721eeb436eb8c1f64f7603246c2d3181fbe43cb85317ca434925ae95eaf890e73</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8GKFrcnOfnorxVpB6KF68RKy2QlN2e6uybZYf73RFisInsKEZ95hhpBLzoacJXDLhzELcwijI9LjLE0D4Dw7Jj3GGARJHvNTcubc0pdxCNAjm7mpjGpqWjYtlnQhdW3WK9q8mxLp9XQ-G1BZH_4_jPX4t3j1opDO905wcv98R0d0JTu0RlbUYiU748O7hpa4MQppu9g6o9w5OdGycnixf_vkxTePp8HT7OFxPHoKFOTQBWnIEYsIEiwyxXUS6TRhfrlEhSXwjOsCI1BFFgNPlYwgysNYYh6j1FnOMIU-udrltrZ5W6PrxLJZ29qPFCHLMohTyBOvBjulbOOcRS1aa1bSbgVn4uusgov9Wb292VmnTPe93Q_eNPYARVvq__Df5E9z0YRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088357396</pqid></control><display><type>article</type><title>Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ali, T. ; Polakowski, P. ; Riedel, S. ; Büttner, T. ; Kämpfe, T. ; Rudolph, M. ; Pätzold, B. ; Seidel, K. ; Löhr, D. ; Hoffmann, R. ; Czernohorsky, M. ; Kühnel, K. ; Thrun, X. ; Hanisch, N. ; Steinke, P. ; Calvo, J. ; Müller, J.</creator><creatorcontrib>Ali, T. ; Polakowski, P. ; Riedel, S. ; Büttner, T. ; Kämpfe, T. ; Rudolph, M. ; Pätzold, B. ; Seidel, K. ; Löhr, D. ; Hoffmann, R. ; Czernohorsky, M. ; Kühnel, K. ; Thrun, X. ; Hanisch, N. ; Steinke, P. ; Calvo, J. ; Müller, J.</creatorcontrib><description>The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5029324</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cycle ratio ; Dependence ; Ferroelectric materials ; Ferroelectricity ; Film thickness ; Hafnium oxide ; Physics ; Silicon ; Zirconium oxides</subject><ispartof>Applied physics letters, 2018-05, Vol.112 (22)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-721eeb436eb8c1f64f7603246c2d3181fbe43cb85317ca434925ae95eaf890e73</citedby><cites>FETCH-LOGICAL-c393t-721eeb436eb8c1f64f7603246c2d3181fbe43cb85317ca434925ae95eaf890e73</cites><orcidid>0000-0002-9840-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5029324$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Ali, T.</creatorcontrib><creatorcontrib>Polakowski, P.</creatorcontrib><creatorcontrib>Riedel, S.</creatorcontrib><creatorcontrib>Büttner, T.</creatorcontrib><creatorcontrib>Kämpfe, T.</creatorcontrib><creatorcontrib>Rudolph, M.</creatorcontrib><creatorcontrib>Pätzold, B.</creatorcontrib><creatorcontrib>Seidel, K.</creatorcontrib><creatorcontrib>Löhr, D.</creatorcontrib><creatorcontrib>Hoffmann, R.</creatorcontrib><creatorcontrib>Czernohorsky, M.</creatorcontrib><creatorcontrib>Kühnel, K.</creatorcontrib><creatorcontrib>Thrun, X.</creatorcontrib><creatorcontrib>Hanisch, N.</creatorcontrib><creatorcontrib>Steinke, P.</creatorcontrib><creatorcontrib>Calvo, J.</creatorcontrib><creatorcontrib>Müller, J.</creatorcontrib><title>Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics</title><title>Applied physics letters</title><description>The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.</description><subject>Applied physics</subject><subject>Cycle ratio</subject><subject>Dependence</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Film thickness</subject><subject>Hafnium oxide</subject><subject>Physics</subject><subject>Silicon</subject><subject>Zirconium oxides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8GKFrcnOfnorxVpB6KF68RKy2QlN2e6uybZYf73RFisInsKEZ95hhpBLzoacJXDLhzELcwijI9LjLE0D4Dw7Jj3GGARJHvNTcubc0pdxCNAjm7mpjGpqWjYtlnQhdW3WK9q8mxLp9XQ-G1BZH_4_jPX4t3j1opDO905wcv98R0d0JTu0RlbUYiU748O7hpa4MQppu9g6o9w5OdGycnixf_vkxTePp8HT7OFxPHoKFOTQBWnIEYsIEiwyxXUS6TRhfrlEhSXwjOsCI1BFFgNPlYwgysNYYh6j1FnOMIU-udrltrZ5W6PrxLJZ29qPFCHLMohTyBOvBjulbOOcRS1aa1bSbgVn4uusgov9Wb292VmnTPe93Q_eNPYARVvq__Df5E9z0YRw</recordid><startdate>20180528</startdate><enddate>20180528</enddate><creator>Ali, T.</creator><creator>Polakowski, P.</creator><creator>Riedel, S.</creator><creator>Büttner, T.</creator><creator>Kämpfe, T.</creator><creator>Rudolph, M.</creator><creator>Pätzold, B.</creator><creator>Seidel, K.</creator><creator>Löhr, D.</creator><creator>Hoffmann, R.</creator><creator>Czernohorsky, M.</creator><creator>Kühnel, K.</creator><creator>Thrun, X.</creator><creator>Hanisch, N.</creator><creator>Steinke, P.</creator><creator>Calvo, J.</creator><creator>Müller, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9840-3531</orcidid></search><sort><creationdate>20180528</creationdate><title>Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics</title><author>Ali, T. ; Polakowski, P. ; Riedel, S. ; Büttner, T. ; Kämpfe, T. ; Rudolph, M. ; Pätzold, B. ; Seidel, K. ; Löhr, D. ; Hoffmann, R. ; Czernohorsky, M. ; Kühnel, K. ; Thrun, X. ; Hanisch, N. ; Steinke, P. ; Calvo, J. ; Müller, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-721eeb436eb8c1f64f7603246c2d3181fbe43cb85317ca434925ae95eaf890e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Cycle ratio</topic><topic>Dependence</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Film thickness</topic><topic>Hafnium oxide</topic><topic>Physics</topic><topic>Silicon</topic><topic>Zirconium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, T.</creatorcontrib><creatorcontrib>Polakowski, P.</creatorcontrib><creatorcontrib>Riedel, S.</creatorcontrib><creatorcontrib>Büttner, T.</creatorcontrib><creatorcontrib>Kämpfe, T.</creatorcontrib><creatorcontrib>Rudolph, M.</creatorcontrib><creatorcontrib>Pätzold, B.</creatorcontrib><creatorcontrib>Seidel, K.</creatorcontrib><creatorcontrib>Löhr, D.</creatorcontrib><creatorcontrib>Hoffmann, R.</creatorcontrib><creatorcontrib>Czernohorsky, M.</creatorcontrib><creatorcontrib>Kühnel, K.</creatorcontrib><creatorcontrib>Thrun, X.</creatorcontrib><creatorcontrib>Hanisch, N.</creatorcontrib><creatorcontrib>Steinke, P.</creatorcontrib><creatorcontrib>Calvo, J.</creatorcontrib><creatorcontrib>Müller, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, T.</au><au>Polakowski, P.</au><au>Riedel, S.</au><au>Büttner, T.</au><au>Kämpfe, T.</au><au>Rudolph, M.</au><au>Pätzold, B.</au><au>Seidel, K.</au><au>Löhr, D.</au><au>Hoffmann, R.</au><au>Czernohorsky, M.</au><au>Kühnel, K.</au><au>Thrun, X.</au><au>Hanisch, N.</au><au>Steinke, P.</au><au>Calvo, J.</au><au>Müller, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics</atitle><jtitle>Applied physics letters</jtitle><date>2018-05-28</date><risdate>2018</risdate><volume>112</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5029324</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9840-3531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-05, Vol.112 (22)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2088357396
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Cycle ratio
Dependence
Ferroelectric materials
Ferroelectricity
Film thickness
Hafnium oxide
Physics
Silicon
Zirconium oxides
title Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20doped%20hafnium%20oxide%20(HSO)%20and%20hafnium%20zirconium%20oxide%20(HZO)%20based%20FeFET:%20A%20material%20relation%20to%20device%20physics&rft.jtitle=Applied%20physics%20letters&rft.au=Ali,%20T.&rft.date=2018-05-28&rft.volume=112&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5029324&rft_dat=%3Cproquest_cross%3E2088357396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088357396&rft_id=info:pmid/&rfr_iscdi=true