Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics
The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of f...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-05, Vol.112 (22) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 112 |
creator | Ali, T. Polakowski, P. Riedel, S. Büttner, T. Kämpfe, T. Rudolph, M. Pätzold, B. Seidel, K. Löhr, D. Hoffmann, R. Czernohorsky, M. Kühnel, K. Thrun, X. Hanisch, N. Steinke, P. Calvo, J. Müller, J. |
description | The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance. |
doi_str_mv | 10.1063/1.5029324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088357396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088357396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-721eeb436eb8c1f64f7603246c2d3181fbe43cb85317ca434925ae95eaf890e73</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8GKFrcnOfnorxVpB6KF68RKy2QlN2e6uybZYf73RFisInsKEZ95hhpBLzoacJXDLhzELcwijI9LjLE0D4Dw7Jj3GGARJHvNTcubc0pdxCNAjm7mpjGpqWjYtlnQhdW3WK9q8mxLp9XQ-G1BZH_4_jPX4t3j1opDO905wcv98R0d0JTu0RlbUYiU748O7hpa4MQppu9g6o9w5OdGycnixf_vkxTePp8HT7OFxPHoKFOTQBWnIEYsIEiwyxXUS6TRhfrlEhSXwjOsCI1BFFgNPlYwgysNYYh6j1FnOMIU-udrltrZ5W6PrxLJZ29qPFCHLMohTyBOvBjulbOOcRS1aa1bSbgVn4uusgov9Wb292VmnTPe93Q_eNPYARVvq__Df5E9z0YRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088357396</pqid></control><display><type>article</type><title>Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ali, T. ; Polakowski, P. ; Riedel, S. ; Büttner, T. ; Kämpfe, T. ; Rudolph, M. ; Pätzold, B. ; Seidel, K. ; Löhr, D. ; Hoffmann, R. ; Czernohorsky, M. ; Kühnel, K. ; Thrun, X. ; Hanisch, N. ; Steinke, P. ; Calvo, J. ; Müller, J.</creator><creatorcontrib>Ali, T. ; Polakowski, P. ; Riedel, S. ; Büttner, T. ; Kämpfe, T. ; Rudolph, M. ; Pätzold, B. ; Seidel, K. ; Löhr, D. ; Hoffmann, R. ; Czernohorsky, M. ; Kühnel, K. ; Thrun, X. ; Hanisch, N. ; Steinke, P. ; Calvo, J. ; Müller, J.</creatorcontrib><description>The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5029324</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cycle ratio ; Dependence ; Ferroelectric materials ; Ferroelectricity ; Film thickness ; Hafnium oxide ; Physics ; Silicon ; Zirconium oxides</subject><ispartof>Applied physics letters, 2018-05, Vol.112 (22)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-721eeb436eb8c1f64f7603246c2d3181fbe43cb85317ca434925ae95eaf890e73</citedby><cites>FETCH-LOGICAL-c393t-721eeb436eb8c1f64f7603246c2d3181fbe43cb85317ca434925ae95eaf890e73</cites><orcidid>0000-0002-9840-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5029324$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Ali, T.</creatorcontrib><creatorcontrib>Polakowski, P.</creatorcontrib><creatorcontrib>Riedel, S.</creatorcontrib><creatorcontrib>Büttner, T.</creatorcontrib><creatorcontrib>Kämpfe, T.</creatorcontrib><creatorcontrib>Rudolph, M.</creatorcontrib><creatorcontrib>Pätzold, B.</creatorcontrib><creatorcontrib>Seidel, K.</creatorcontrib><creatorcontrib>Löhr, D.</creatorcontrib><creatorcontrib>Hoffmann, R.</creatorcontrib><creatorcontrib>Czernohorsky, M.</creatorcontrib><creatorcontrib>Kühnel, K.</creatorcontrib><creatorcontrib>Thrun, X.</creatorcontrib><creatorcontrib>Hanisch, N.</creatorcontrib><creatorcontrib>Steinke, P.</creatorcontrib><creatorcontrib>Calvo, J.</creatorcontrib><creatorcontrib>Müller, J.</creatorcontrib><title>Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics</title><title>Applied physics letters</title><description>The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.</description><subject>Applied physics</subject><subject>Cycle ratio</subject><subject>Dependence</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Film thickness</subject><subject>Hafnium oxide</subject><subject>Physics</subject><subject>Silicon</subject><subject>Zirconium oxides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8GKFrcnOfnorxVpB6KF68RKy2QlN2e6uybZYf73RFisInsKEZ95hhpBLzoacJXDLhzELcwijI9LjLE0D4Dw7Jj3GGARJHvNTcubc0pdxCNAjm7mpjGpqWjYtlnQhdW3WK9q8mxLp9XQ-G1BZH_4_jPX4t3j1opDO905wcv98R0d0JTu0RlbUYiU748O7hpa4MQppu9g6o9w5OdGycnixf_vkxTePp8HT7OFxPHoKFOTQBWnIEYsIEiwyxXUS6TRhfrlEhSXwjOsCI1BFFgNPlYwgysNYYh6j1FnOMIU-udrltrZ5W6PrxLJZ29qPFCHLMohTyBOvBjulbOOcRS1aa1bSbgVn4uusgov9Wb292VmnTPe93Q_eNPYARVvq__Df5E9z0YRw</recordid><startdate>20180528</startdate><enddate>20180528</enddate><creator>Ali, T.</creator><creator>Polakowski, P.</creator><creator>Riedel, S.</creator><creator>Büttner, T.</creator><creator>Kämpfe, T.</creator><creator>Rudolph, M.</creator><creator>Pätzold, B.</creator><creator>Seidel, K.</creator><creator>Löhr, D.</creator><creator>Hoffmann, R.</creator><creator>Czernohorsky, M.</creator><creator>Kühnel, K.</creator><creator>Thrun, X.</creator><creator>Hanisch, N.</creator><creator>Steinke, P.</creator><creator>Calvo, J.</creator><creator>Müller, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9840-3531</orcidid></search><sort><creationdate>20180528</creationdate><title>Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics</title><author>Ali, T. ; Polakowski, P. ; Riedel, S. ; Büttner, T. ; Kämpfe, T. ; Rudolph, M. ; Pätzold, B. ; Seidel, K. ; Löhr, D. ; Hoffmann, R. ; Czernohorsky, M. ; Kühnel, K. ; Thrun, X. ; Hanisch, N. ; Steinke, P. ; Calvo, J. ; Müller, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-721eeb436eb8c1f64f7603246c2d3181fbe43cb85317ca434925ae95eaf890e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Cycle ratio</topic><topic>Dependence</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Film thickness</topic><topic>Hafnium oxide</topic><topic>Physics</topic><topic>Silicon</topic><topic>Zirconium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, T.</creatorcontrib><creatorcontrib>Polakowski, P.</creatorcontrib><creatorcontrib>Riedel, S.</creatorcontrib><creatorcontrib>Büttner, T.</creatorcontrib><creatorcontrib>Kämpfe, T.</creatorcontrib><creatorcontrib>Rudolph, M.</creatorcontrib><creatorcontrib>Pätzold, B.</creatorcontrib><creatorcontrib>Seidel, K.</creatorcontrib><creatorcontrib>Löhr, D.</creatorcontrib><creatorcontrib>Hoffmann, R.</creatorcontrib><creatorcontrib>Czernohorsky, M.</creatorcontrib><creatorcontrib>Kühnel, K.</creatorcontrib><creatorcontrib>Thrun, X.</creatorcontrib><creatorcontrib>Hanisch, N.</creatorcontrib><creatorcontrib>Steinke, P.</creatorcontrib><creatorcontrib>Calvo, J.</creatorcontrib><creatorcontrib>Müller, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, T.</au><au>Polakowski, P.</au><au>Riedel, S.</au><au>Büttner, T.</au><au>Kämpfe, T.</au><au>Rudolph, M.</au><au>Pätzold, B.</au><au>Seidel, K.</au><au>Löhr, D.</au><au>Hoffmann, R.</au><au>Czernohorsky, M.</au><au>Kühnel, K.</au><au>Thrun, X.</au><au>Hanisch, N.</au><au>Steinke, P.</au><au>Calvo, J.</au><au>Müller, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics</atitle><jtitle>Applied physics letters</jtitle><date>2018-05-28</date><risdate>2018</risdate><volume>112</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5029324</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9840-3531</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-05, Vol.112 (22) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2088357396 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Cycle ratio Dependence Ferroelectric materials Ferroelectricity Film thickness Hafnium oxide Physics Silicon Zirconium oxides |
title | Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20doped%20hafnium%20oxide%20(HSO)%20and%20hafnium%20zirconium%20oxide%20(HZO)%20based%20FeFET:%20A%20material%20relation%20to%20device%20physics&rft.jtitle=Applied%20physics%20letters&rft.au=Ali,%20T.&rft.date=2018-05-28&rft.volume=112&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5029324&rft_dat=%3Cproquest_cross%3E2088357396%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088357396&rft_id=info:pmid/&rfr_iscdi=true |