The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1999-09
Hauptverfasser: Bonatsos, Dennis, Karoussos, N, Raychev, P P, Roussev, R P, Terziev, P A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bonatsos, Dennis
Karoussos, N
Raychev, P P
Roussev, R P
Terziev, P A
description Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.
doi_str_mv 10.48550/arxiv.9909002
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088342814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088342814</sourcerecordid><originalsourceid>FETCH-proquest_journals_20883428143</originalsourceid><addsrcrecordid>eNqNjbEOgjAURRsTE42yOr_EGS0taBkNaljQhc3BVC1aLVT7wPj5dvADnG5y7sm9hEwiOotFktC5dB_9nqUpTSllPTJknEehiBkbkADxTj1dLFmS8CE5lDcFPFzrWjWobSMNvMK1qqyr1QVy6Wrb6DPs8ayNka11IJsLFPLq4a6rT8oh2ApW5iGNhkK1fiAzHba-GJN-JQ2q4JcjMt1uyiwPn86-OoXt8W475y_xyKgQPGYiivl_1hfEVEeP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088342814</pqid></control><display><type>article</type><title>The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters</title><source>Free E- Journals</source><creator>Bonatsos, Dennis ; Karoussos, N ; Raychev, P P ; Roussev, R P ; Terziev, P A</creator><creatorcontrib>Bonatsos, Dennis ; Karoussos, N ; Raychev, P P ; Roussev, R P ; Terziev, P A</creatorcontrib><description>Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) &gt; SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9909002</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alkali metals ; Deformation ; Harmonic oscillators ; Jellium ; Metal clusters ; Oscillators ; Predictions ; Spherical harmonics ; Symmetry</subject><ispartof>arXiv.org, 1999-09</ispartof><rights>1999. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Bonatsos, Dennis</creatorcontrib><creatorcontrib>Karoussos, N</creatorcontrib><creatorcontrib>Raychev, P P</creatorcontrib><creatorcontrib>Roussev, R P</creatorcontrib><creatorcontrib>Terziev, P A</creatorcontrib><title>The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters</title><title>arXiv.org</title><description>Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) &gt; SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.</description><subject>Alkali metals</subject><subject>Deformation</subject><subject>Harmonic oscillators</subject><subject>Jellium</subject><subject>Metal clusters</subject><subject>Oscillators</subject><subject>Predictions</subject><subject>Spherical harmonics</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjbEOgjAURRsTE42yOr_EGS0taBkNaljQhc3BVC1aLVT7wPj5dvADnG5y7sm9hEwiOotFktC5dB_9nqUpTSllPTJknEehiBkbkADxTj1dLFmS8CE5lDcFPFzrWjWobSMNvMK1qqyr1QVy6Wrb6DPs8ayNka11IJsLFPLq4a6rT8oh2ApW5iGNhkK1fiAzHba-GJN-JQ2q4JcjMt1uyiwPn86-OoXt8W475y_xyKgQPGYiivl_1hfEVEeP</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Bonatsos, Dennis</creator><creator>Karoussos, N</creator><creator>Raychev, P P</creator><creator>Roussev, R P</creator><creator>Terziev, P A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19990901</creationdate><title>The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters</title><author>Bonatsos, Dennis ; Karoussos, N ; Raychev, P P ; Roussev, R P ; Terziev, P A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20883428143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Alkali metals</topic><topic>Deformation</topic><topic>Harmonic oscillators</topic><topic>Jellium</topic><topic>Metal clusters</topic><topic>Oscillators</topic><topic>Predictions</topic><topic>Spherical harmonics</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Bonatsos, Dennis</creatorcontrib><creatorcontrib>Karoussos, N</creatorcontrib><creatorcontrib>Raychev, P P</creatorcontrib><creatorcontrib>Roussev, R P</creatorcontrib><creatorcontrib>Terziev, P A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonatsos, Dennis</au><au>Karoussos, N</au><au>Raychev, P P</au><au>Roussev, R P</au><au>Terziev, P A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters</atitle><jtitle>arXiv.org</jtitle><date>1999-09-01</date><risdate>1999</risdate><eissn>2331-8422</eissn><abstract>Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) &gt; SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9909002</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 1999-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2088342814
source Free E- Journals
subjects Alkali metals
Deformation
Harmonic oscillators
Jellium
Metal clusters
Oscillators
Predictions
Spherical harmonics
Symmetry
title The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%203-Dimensional%20q-Deformed%20Harmonic%20Oscillator%20and%20Magic%20Numbers%20of%20Alkali%20Metal%20Clusters&rft.jtitle=arXiv.org&rft.au=Bonatsos,%20Dennis&rft.date=1999-09-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9909002&rft_dat=%3Cproquest%3E2088342814%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088342814&rft_id=info:pmid/&rfr_iscdi=true