The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters
Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme us...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1999-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bonatsos, Dennis Karoussos, N Raychev, P P Roussev, R P Terziev, P A |
description | Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters. |
doi_str_mv | 10.48550/arxiv.9909002 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088342814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088342814</sourcerecordid><originalsourceid>FETCH-proquest_journals_20883428143</originalsourceid><addsrcrecordid>eNqNjbEOgjAURRsTE42yOr_EGS0taBkNaljQhc3BVC1aLVT7wPj5dvADnG5y7sm9hEwiOotFktC5dB_9nqUpTSllPTJknEehiBkbkADxTj1dLFmS8CE5lDcFPFzrWjWobSMNvMK1qqyr1QVy6Wrb6DPs8ayNka11IJsLFPLq4a6rT8oh2ApW5iGNhkK1fiAzHba-GJN-JQ2q4JcjMt1uyiwPn86-OoXt8W475y_xyKgQPGYiivl_1hfEVEeP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088342814</pqid></control><display><type>article</type><title>The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters</title><source>Free E- Journals</source><creator>Bonatsos, Dennis ; Karoussos, N ; Raychev, P P ; Roussev, R P ; Terziev, P A</creator><creatorcontrib>Bonatsos, Dennis ; Karoussos, N ; Raychev, P P ; Roussev, R P ; Terziev, P A</creatorcontrib><description>Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9909002</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alkali metals ; Deformation ; Harmonic oscillators ; Jellium ; Metal clusters ; Oscillators ; Predictions ; Spherical harmonics ; Symmetry</subject><ispartof>arXiv.org, 1999-09</ispartof><rights>1999. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Bonatsos, Dennis</creatorcontrib><creatorcontrib>Karoussos, N</creatorcontrib><creatorcontrib>Raychev, P P</creatorcontrib><creatorcontrib>Roussev, R P</creatorcontrib><creatorcontrib>Terziev, P A</creatorcontrib><title>The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters</title><title>arXiv.org</title><description>Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.</description><subject>Alkali metals</subject><subject>Deformation</subject><subject>Harmonic oscillators</subject><subject>Jellium</subject><subject>Metal clusters</subject><subject>Oscillators</subject><subject>Predictions</subject><subject>Spherical harmonics</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjbEOgjAURRsTE42yOr_EGS0taBkNaljQhc3BVC1aLVT7wPj5dvADnG5y7sm9hEwiOotFktC5dB_9nqUpTSllPTJknEehiBkbkADxTj1dLFmS8CE5lDcFPFzrWjWobSMNvMK1qqyr1QVy6Wrb6DPs8ayNka11IJsLFPLq4a6rT8oh2ApW5iGNhkK1fiAzHba-GJN-JQ2q4JcjMt1uyiwPn86-OoXt8W475y_xyKgQPGYiivl_1hfEVEeP</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Bonatsos, Dennis</creator><creator>Karoussos, N</creator><creator>Raychev, P P</creator><creator>Roussev, R P</creator><creator>Terziev, P A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19990901</creationdate><title>The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters</title><author>Bonatsos, Dennis ; Karoussos, N ; Raychev, P P ; Roussev, R P ; Terziev, P A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20883428143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Alkali metals</topic><topic>Deformation</topic><topic>Harmonic oscillators</topic><topic>Jellium</topic><topic>Metal clusters</topic><topic>Oscillators</topic><topic>Predictions</topic><topic>Spherical harmonics</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Bonatsos, Dennis</creatorcontrib><creatorcontrib>Karoussos, N</creatorcontrib><creatorcontrib>Raychev, P P</creatorcontrib><creatorcontrib>Roussev, R P</creatorcontrib><creatorcontrib>Terziev, P A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonatsos, Dennis</au><au>Karoussos, N</au><au>Raychev, P P</au><au>Roussev, R P</au><au>Terziev, P A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters</atitle><jtitle>arXiv.org</jtitle><date>1999-09-01</date><risdate>1999</risdate><eissn>2331-8422</eissn><abstract>Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9909002</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 1999-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2088342814 |
source | Free E- Journals |
subjects | Alkali metals Deformation Harmonic oscillators Jellium Metal clusters Oscillators Predictions Spherical harmonics Symmetry |
title | The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%203-Dimensional%20q-Deformed%20Harmonic%20Oscillator%20and%20Magic%20Numbers%20of%20Alkali%20Metal%20Clusters&rft.jtitle=arXiv.org&rft.au=Bonatsos,%20Dennis&rft.date=1999-09-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9909002&rft_dat=%3Cproquest%3E2088342814%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088342814&rft_id=info:pmid/&rfr_iscdi=true |