Comparison between attractors in skew product dynamical systems with attractors in dynamical systems
In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1974 |
creator | Roslan, Ummu Atiqah Mohd |
description | In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product map where the map exhibit an invariant graph (i.e. attractor). From this project, we observe that by using the skew product system, we are able to study the attraction of the orbits to the attractor in more systematic way where instead of attracting from all directions in the metric space, they converge in fibre directions such that the orbits move vertically closer and closer along the fibres until they intercept with the attractor, or namely the invariant graph. |
doi_str_mv | 10.1063/1.5041572 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2088313202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088313202</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-1efd65c49acecb8045decf4669867407b1e1cf768560dfe4190a39aea9eb2bea3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsL3yDgTpiaeyZLKd6g4EbBXcgk_2Bq52KSWvr2ViwICq7O5jsXDkLnlMwoUfyKziQRVGp2gCZUSlppRdUhmhBiRMUEfzlGJzkvCWFG63qCwnzoRpdiHnrcQNkA9NiVkpwvQ8o49ji_wQaPaQhrX3DY9q6L3q1w3uYCXcabWF5_Of5Ap-iodasMZ3udoufbm6f5fbV4vHuYXy-qkUleKgptUNIL4zz4piZCBvCtUMrUSguiGwrUt1rVUpHQgqCGOG4cOAMNa8DxKbr4zt3NfV9DLnY5rFO_q7SM1DWnnBG2oy6_qexjcSUOvR1T7Fza2o8hWWr3D9oxtP_BlNivy38M_BO4gnXf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088313202</pqid></control><display><type>conference_proceeding</type><title>Comparison between attractors in skew product dynamical systems with attractors in dynamical systems</title><source>AIP Journals Complete</source><creator>Roslan, Ummu Atiqah Mohd</creator><contributor>Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</contributor><creatorcontrib>Roslan, Ummu Atiqah Mohd ; Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</creatorcontrib><description>In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product map where the map exhibit an invariant graph (i.e. attractor). From this project, we observe that by using the skew product system, we are able to study the attraction of the orbits to the attractor in more systematic way where instead of attracting from all directions in the metric space, they converge in fibre directions such that the orbits move vertically closer and closer along the fibres until they intercept with the attractor, or namely the invariant graph.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5041572</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Attraction ; Attractors (mathematics) ; Chaos theory ; Dynamical systems ; Invariants ; Metric space</subject><ispartof>AIP Conference Proceedings, 2018, Vol.1974 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5041572$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Mohamed, Mesliza</contributor><contributor>Sharif, Sarifah Radiah</contributor><contributor>Rahman, Wan Eny Zarina Wan Abdul</contributor><contributor>Akbarally, Ajab Bai</contributor><contributor>Jaffar, Maheran Mohd</contributor><contributor>Mohamad, Daud</contributor><contributor>Maidinsah, Hamidah</contributor><creatorcontrib>Roslan, Ummu Atiqah Mohd</creatorcontrib><title>Comparison between attractors in skew product dynamical systems with attractors in dynamical systems</title><title>AIP Conference Proceedings</title><description>In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product map where the map exhibit an invariant graph (i.e. attractor). From this project, we observe that by using the skew product system, we are able to study the attraction of the orbits to the attractor in more systematic way where instead of attracting from all directions in the metric space, they converge in fibre directions such that the orbits move vertically closer and closer along the fibres until they intercept with the attractor, or namely the invariant graph.</description><subject>Attraction</subject><subject>Attractors (mathematics)</subject><subject>Chaos theory</subject><subject>Dynamical systems</subject><subject>Invariants</subject><subject>Metric space</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMtKAzEYhYMoWKsL3yDgTpiaeyZLKd6g4EbBXcgk_2Bq52KSWvr2ViwICq7O5jsXDkLnlMwoUfyKziQRVGp2gCZUSlppRdUhmhBiRMUEfzlGJzkvCWFG63qCwnzoRpdiHnrcQNkA9NiVkpwvQ8o49ji_wQaPaQhrX3DY9q6L3q1w3uYCXcabWF5_Of5Ap-iodasMZ3udoufbm6f5fbV4vHuYXy-qkUleKgptUNIL4zz4piZCBvCtUMrUSguiGwrUt1rVUpHQgqCGOG4cOAMNa8DxKbr4zt3NfV9DLnY5rFO_q7SM1DWnnBG2oy6_qexjcSUOvR1T7Fza2o8hWWr3D9oxtP_BlNivy38M_BO4gnXf</recordid><startdate>20180628</startdate><enddate>20180628</enddate><creator>Roslan, Ummu Atiqah Mohd</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180628</creationdate><title>Comparison between attractors in skew product dynamical systems with attractors in dynamical systems</title><author>Roslan, Ummu Atiqah Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-1efd65c49acecb8045decf4669867407b1e1cf768560dfe4190a39aea9eb2bea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attraction</topic><topic>Attractors (mathematics)</topic><topic>Chaos theory</topic><topic>Dynamical systems</topic><topic>Invariants</topic><topic>Metric space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roslan, Ummu Atiqah Mohd</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roslan, Ummu Atiqah Mohd</au><au>Mohamed, Mesliza</au><au>Sharif, Sarifah Radiah</au><au>Rahman, Wan Eny Zarina Wan Abdul</au><au>Akbarally, Ajab Bai</au><au>Jaffar, Maheran Mohd</au><au>Mohamad, Daud</au><au>Maidinsah, Hamidah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison between attractors in skew product dynamical systems with attractors in dynamical systems</atitle><btitle>AIP Conference Proceedings</btitle><date>2018-06-28</date><risdate>2018</risdate><volume>1974</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product map where the map exhibit an invariant graph (i.e. attractor). From this project, we observe that by using the skew product system, we are able to study the attraction of the orbits to the attractor in more systematic way where instead of attracting from all directions in the metric space, they converge in fibre directions such that the orbits move vertically closer and closer along the fibres until they intercept with the attractor, or namely the invariant graph.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5041572</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2018, Vol.1974 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2088313202 |
source | AIP Journals Complete |
subjects | Attraction Attractors (mathematics) Chaos theory Dynamical systems Invariants Metric space |
title | Comparison between attractors in skew product dynamical systems with attractors in dynamical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20between%20attractors%20in%20skew%20product%20dynamical%20systems%20with%20attractors%20in%20dynamical%20systems&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Roslan,%20Ummu%20Atiqah%20Mohd&rft.date=2018-06-28&rft.volume=1974&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5041572&rft_dat=%3Cproquest_scita%3E2088313202%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088313202&rft_id=info:pmid/&rfr_iscdi=true |