Comparison between attractors in skew product dynamical systems with attractors in dynamical systems

In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Roslan, Ummu Atiqah Mohd
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1974
creator Roslan, Ummu Atiqah Mohd
description In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product map where the map exhibit an invariant graph (i.e. attractor). From this project, we observe that by using the skew product system, we are able to study the attraction of the orbits to the attractor in more systematic way where instead of attracting from all directions in the metric space, they converge in fibre directions such that the orbits move vertically closer and closer along the fibres until they intercept with the attractor, or namely the invariant graph.
doi_str_mv 10.1063/1.5041572
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2088313202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088313202</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-1efd65c49acecb8045decf4669867407b1e1cf768560dfe4190a39aea9eb2bea3</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsL3yDgTpiaeyZLKd6g4EbBXcgk_2Bq52KSWvr2ViwICq7O5jsXDkLnlMwoUfyKziQRVGp2gCZUSlppRdUhmhBiRMUEfzlGJzkvCWFG63qCwnzoRpdiHnrcQNkA9NiVkpwvQ8o49ji_wQaPaQhrX3DY9q6L3q1w3uYCXcabWF5_Of5Ap-iodasMZ3udoufbm6f5fbV4vHuYXy-qkUleKgptUNIL4zz4piZCBvCtUMrUSguiGwrUt1rVUpHQgqCGOG4cOAMNa8DxKbr4zt3NfV9DLnY5rFO_q7SM1DWnnBG2oy6_qexjcSUOvR1T7Fza2o8hWWr3D9oxtP_BlNivy38M_BO4gnXf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088313202</pqid></control><display><type>conference_proceeding</type><title>Comparison between attractors in skew product dynamical systems with attractors in dynamical systems</title><source>AIP Journals Complete</source><creator>Roslan, Ummu Atiqah Mohd</creator><contributor>Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</contributor><creatorcontrib>Roslan, Ummu Atiqah Mohd ; Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</creatorcontrib><description>In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product map where the map exhibit an invariant graph (i.e. attractor). From this project, we observe that by using the skew product system, we are able to study the attraction of the orbits to the attractor in more systematic way where instead of attracting from all directions in the metric space, they converge in fibre directions such that the orbits move vertically closer and closer along the fibres until they intercept with the attractor, or namely the invariant graph.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5041572</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Attraction ; Attractors (mathematics) ; Chaos theory ; Dynamical systems ; Invariants ; Metric space</subject><ispartof>AIP Conference Proceedings, 2018, Vol.1974 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5041572$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Mohamed, Mesliza</contributor><contributor>Sharif, Sarifah Radiah</contributor><contributor>Rahman, Wan Eny Zarina Wan Abdul</contributor><contributor>Akbarally, Ajab Bai</contributor><contributor>Jaffar, Maheran Mohd</contributor><contributor>Mohamad, Daud</contributor><contributor>Maidinsah, Hamidah</contributor><creatorcontrib>Roslan, Ummu Atiqah Mohd</creatorcontrib><title>Comparison between attractors in skew product dynamical systems with attractors in dynamical systems</title><title>AIP Conference Proceedings</title><description>In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product map where the map exhibit an invariant graph (i.e. attractor). From this project, we observe that by using the skew product system, we are able to study the attraction of the orbits to the attractor in more systematic way where instead of attracting from all directions in the metric space, they converge in fibre directions such that the orbits move vertically closer and closer along the fibres until they intercept with the attractor, or namely the invariant graph.</description><subject>Attraction</subject><subject>Attractors (mathematics)</subject><subject>Chaos theory</subject><subject>Dynamical systems</subject><subject>Invariants</subject><subject>Metric space</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMtKAzEYhYMoWKsL3yDgTpiaeyZLKd6g4EbBXcgk_2Bq52KSWvr2ViwICq7O5jsXDkLnlMwoUfyKziQRVGp2gCZUSlppRdUhmhBiRMUEfzlGJzkvCWFG63qCwnzoRpdiHnrcQNkA9NiVkpwvQ8o49ji_wQaPaQhrX3DY9q6L3q1w3uYCXcabWF5_Of5Ap-iodasMZ3udoufbm6f5fbV4vHuYXy-qkUleKgptUNIL4zz4piZCBvCtUMrUSguiGwrUt1rVUpHQgqCGOG4cOAMNa8DxKbr4zt3NfV9DLnY5rFO_q7SM1DWnnBG2oy6_qexjcSUOvR1T7Fza2o8hWWr3D9oxtP_BlNivy38M_BO4gnXf</recordid><startdate>20180628</startdate><enddate>20180628</enddate><creator>Roslan, Ummu Atiqah Mohd</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180628</creationdate><title>Comparison between attractors in skew product dynamical systems with attractors in dynamical systems</title><author>Roslan, Ummu Atiqah Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-1efd65c49acecb8045decf4669867407b1e1cf768560dfe4190a39aea9eb2bea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attraction</topic><topic>Attractors (mathematics)</topic><topic>Chaos theory</topic><topic>Dynamical systems</topic><topic>Invariants</topic><topic>Metric space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roslan, Ummu Atiqah Mohd</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roslan, Ummu Atiqah Mohd</au><au>Mohamed, Mesliza</au><au>Sharif, Sarifah Radiah</au><au>Rahman, Wan Eny Zarina Wan Abdul</au><au>Akbarally, Ajab Bai</au><au>Jaffar, Maheran Mohd</au><au>Mohamad, Daud</au><au>Maidinsah, Hamidah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison between attractors in skew product dynamical systems with attractors in dynamical systems</atitle><btitle>AIP Conference Proceedings</btitle><date>2018-06-28</date><risdate>2018</risdate><volume>1974</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we compare a skew product dynamical system with the general dynamical system, in terms of attraction for both systems. More specifically, we investigate the notions of attractor, basin of attraction, compactness and invariance of the attractor. We also give an example of skew product map where the map exhibit an invariant graph (i.e. attractor). From this project, we observe that by using the skew product system, we are able to study the attraction of the orbits to the attractor in more systematic way where instead of attracting from all directions in the metric space, they converge in fibre directions such that the orbits move vertically closer and closer along the fibres until they intercept with the attractor, or namely the invariant graph.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5041572</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2018, Vol.1974 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2088313202
source AIP Journals Complete
subjects Attraction
Attractors (mathematics)
Chaos theory
Dynamical systems
Invariants
Metric space
title Comparison between attractors in skew product dynamical systems with attractors in dynamical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20between%20attractors%20in%20skew%20product%20dynamical%20systems%20with%20attractors%20in%20dynamical%20systems&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Roslan,%20Ummu%20Atiqah%20Mohd&rft.date=2018-06-28&rft.volume=1974&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5041572&rft_dat=%3Cproquest_scita%3E2088313202%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088313202&rft_id=info:pmid/&rfr_iscdi=true