Satisfiability based reverse analysis method in diabetes detection

Accurate diabetes diagnosis is vital to ensure patient with certain symptom can be treated appropriately. Medical diagnosis is often challenging because not all patient’s symptoms will arrive to the same diagnosis. Medical practitioner or specialist is not able to diagnose the disease accurately whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kasihmuddin, Mohd Shareduwan Mohd, Mansor, Mohd. Asyraf, Sathasivam, Saratha
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1974
creator Kasihmuddin, Mohd Shareduwan Mohd
Mansor, Mohd. Asyraf
Sathasivam, Saratha
description Accurate diabetes diagnosis is vital to ensure patient with certain symptom can be treated appropriately. Medical diagnosis is often challenging because not all patient’s symptoms will arrive to the same diagnosis. Medical practitioner or specialist is not able to diagnose the disease accurately when the number of attribute that contribute to the disease increase. Logic mining is a platform for data scientist to induce the logical rule from large data set. In this study, 2 Satisfiability based reverse analysis method (2SATRA) will be proposed to extract the logical rule from the data set. The extracted logical rule from the data set will be use to classify the outcome of the diagnosis. 2SATRA is a method that utilized the beneficial feature of Hopfield neural network and 2 Satisfiability problems or HNN-2SAT. The simulation will be examined by using Microsoft Visual 2015 C++ Express software. The robustness of 2SATRA in extracting logical rule in medical data set will be evaluated based on root mean square error (RMSE), mean absolute error (MAE) and CPU time. The result obtained from the computer simulation demonstrates the effectiveness of 2SATRA in doing diabetis diagnosis.
doi_str_mv 10.1063/1.5041551
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2088311660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088311660</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-f2a1e3add34df42092e9a12a9e2b77b5ea5f6d0aebbcb012b6d3c0b9484919543</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbqwn8QcCdMzWsyk6UWX1BwoYK7cDO5gyltZ0zSQv-9M7Tgzs09m4_L4RByzdmMMy3v-KxkipclPyGTMYpKc31KJowZVQglv87JRUpLxoSpqnpCHt4hh9QGcGEV8p46SOhpxB3GhBQ2sNqnkOga83fnadhQP1DMmKgfbpNDt7kkZy2sEl4dc0o-nx4_5i_F4u35dX6_KHpRyly0AjhK8F4q3yrBjEADXIBB4arKlQhlqz0DdK5xjAunvWyYM6pWhptSySm5OfztY_ezxZTtstvGoWGygtW15FxrNqjbg0pNyDD2s30Ma4h7y5kdN7LcHjf6D--6-Adt71v5C0sxZ_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088311660</pqid></control><display><type>conference_proceeding</type><title>Satisfiability based reverse analysis method in diabetes detection</title><source>AIP Journals Complete</source><creator>Kasihmuddin, Mohd Shareduwan Mohd ; Mansor, Mohd. Asyraf ; Sathasivam, Saratha</creator><contributor>Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</contributor><creatorcontrib>Kasihmuddin, Mohd Shareduwan Mohd ; Mansor, Mohd. Asyraf ; Sathasivam, Saratha ; Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</creatorcontrib><description>Accurate diabetes diagnosis is vital to ensure patient with certain symptom can be treated appropriately. Medical diagnosis is often challenging because not all patient’s symptoms will arrive to the same diagnosis. Medical practitioner or specialist is not able to diagnose the disease accurately when the number of attribute that contribute to the disease increase. Logic mining is a platform for data scientist to induce the logical rule from large data set. In this study, 2 Satisfiability based reverse analysis method (2SATRA) will be proposed to extract the logical rule from the data set. The extracted logical rule from the data set will be use to classify the outcome of the diagnosis. 2SATRA is a method that utilized the beneficial feature of Hopfield neural network and 2 Satisfiability problems or HNN-2SAT. The simulation will be examined by using Microsoft Visual 2015 C++ Express software. The robustness of 2SATRA in extracting logical rule in medical data set will be evaluated based on root mean square error (RMSE), mean absolute error (MAE) and CPU time. The result obtained from the computer simulation demonstrates the effectiveness of 2SATRA in doing diabetis diagnosis.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5041551</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Datasets ; Diabetes ; Diabetes mellitus ; Diagnosis ; Neural networks ; Root-mean-square errors</subject><ispartof>AIP conference proceedings, 2018, Vol.1974 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5041551$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Mohamed, Mesliza</contributor><contributor>Sharif, Sarifah Radiah</contributor><contributor>Rahman, Wan Eny Zarina Wan Abdul</contributor><contributor>Akbarally, Ajab Bai</contributor><contributor>Jaffar, Maheran Mohd</contributor><contributor>Mohamad, Daud</contributor><contributor>Maidinsah, Hamidah</contributor><creatorcontrib>Kasihmuddin, Mohd Shareduwan Mohd</creatorcontrib><creatorcontrib>Mansor, Mohd. Asyraf</creatorcontrib><creatorcontrib>Sathasivam, Saratha</creatorcontrib><title>Satisfiability based reverse analysis method in diabetes detection</title><title>AIP conference proceedings</title><description>Accurate diabetes diagnosis is vital to ensure patient with certain symptom can be treated appropriately. Medical diagnosis is often challenging because not all patient’s symptoms will arrive to the same diagnosis. Medical practitioner or specialist is not able to diagnose the disease accurately when the number of attribute that contribute to the disease increase. Logic mining is a platform for data scientist to induce the logical rule from large data set. In this study, 2 Satisfiability based reverse analysis method (2SATRA) will be proposed to extract the logical rule from the data set. The extracted logical rule from the data set will be use to classify the outcome of the diagnosis. 2SATRA is a method that utilized the beneficial feature of Hopfield neural network and 2 Satisfiability problems or HNN-2SAT. The simulation will be examined by using Microsoft Visual 2015 C++ Express software. The robustness of 2SATRA in extracting logical rule in medical data set will be evaluated based on root mean square error (RMSE), mean absolute error (MAE) and CPU time. The result obtained from the computer simulation demonstrates the effectiveness of 2SATRA in doing diabetis diagnosis.</description><subject>Computer simulation</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diagnosis</subject><subject>Neural networks</subject><subject>Root-mean-square errors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp90EtLAzEUBeAgCtbqwn8QcCdMzWsyk6UWX1BwoYK7cDO5gyltZ0zSQv-9M7Tgzs09m4_L4RByzdmMMy3v-KxkipclPyGTMYpKc31KJowZVQglv87JRUpLxoSpqnpCHt4hh9QGcGEV8p46SOhpxB3GhBQ2sNqnkOga83fnadhQP1DMmKgfbpNDt7kkZy2sEl4dc0o-nx4_5i_F4u35dX6_KHpRyly0AjhK8F4q3yrBjEADXIBB4arKlQhlqz0DdK5xjAunvWyYM6pWhptSySm5OfztY_ezxZTtstvGoWGygtW15FxrNqjbg0pNyDD2s30Ma4h7y5kdN7LcHjf6D--6-Adt71v5C0sxZ_E</recordid><startdate>20180628</startdate><enddate>20180628</enddate><creator>Kasihmuddin, Mohd Shareduwan Mohd</creator><creator>Mansor, Mohd. Asyraf</creator><creator>Sathasivam, Saratha</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180628</creationdate><title>Satisfiability based reverse analysis method in diabetes detection</title><author>Kasihmuddin, Mohd Shareduwan Mohd ; Mansor, Mohd. Asyraf ; Sathasivam, Saratha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-f2a1e3add34df42092e9a12a9e2b77b5ea5f6d0aebbcb012b6d3c0b9484919543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diagnosis</topic><topic>Neural networks</topic><topic>Root-mean-square errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasihmuddin, Mohd Shareduwan Mohd</creatorcontrib><creatorcontrib>Mansor, Mohd. Asyraf</creatorcontrib><creatorcontrib>Sathasivam, Saratha</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasihmuddin, Mohd Shareduwan Mohd</au><au>Mansor, Mohd. Asyraf</au><au>Sathasivam, Saratha</au><au>Mohamed, Mesliza</au><au>Sharif, Sarifah Radiah</au><au>Rahman, Wan Eny Zarina Wan Abdul</au><au>Akbarally, Ajab Bai</au><au>Jaffar, Maheran Mohd</au><au>Mohamad, Daud</au><au>Maidinsah, Hamidah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Satisfiability based reverse analysis method in diabetes detection</atitle><btitle>AIP conference proceedings</btitle><date>2018-06-28</date><risdate>2018</risdate><volume>1974</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Accurate diabetes diagnosis is vital to ensure patient with certain symptom can be treated appropriately. Medical diagnosis is often challenging because not all patient’s symptoms will arrive to the same diagnosis. Medical practitioner or specialist is not able to diagnose the disease accurately when the number of attribute that contribute to the disease increase. Logic mining is a platform for data scientist to induce the logical rule from large data set. In this study, 2 Satisfiability based reverse analysis method (2SATRA) will be proposed to extract the logical rule from the data set. The extracted logical rule from the data set will be use to classify the outcome of the diagnosis. 2SATRA is a method that utilized the beneficial feature of Hopfield neural network and 2 Satisfiability problems or HNN-2SAT. The simulation will be examined by using Microsoft Visual 2015 C++ Express software. The robustness of 2SATRA in extracting logical rule in medical data set will be evaluated based on root mean square error (RMSE), mean absolute error (MAE) and CPU time. The result obtained from the computer simulation demonstrates the effectiveness of 2SATRA in doing diabetis diagnosis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5041551</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2018, Vol.1974 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2088311660
source AIP Journals Complete
subjects Computer simulation
Datasets
Diabetes
Diabetes mellitus
Diagnosis
Neural networks
Root-mean-square errors
title Satisfiability based reverse analysis method in diabetes detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Satisfiability%20based%20reverse%20analysis%20method%20in%20diabetes%20detection&rft.btitle=AIP%20conference%20proceedings&rft.au=Kasihmuddin,%20Mohd%20Shareduwan%20Mohd&rft.date=2018-06-28&rft.volume=1974&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5041551&rft_dat=%3Cproquest_scita%3E2088311660%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088311660&rft_id=info:pmid/&rfr_iscdi=true