Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructure
Slow sound is a frequently exploited phenomenon that metamaterials can induce in order to permit wave energy compression, redirection, imaging, sound absorption, and other special functionalities. Generally, however, such slow sound structures have a poor impedance match to air, particularly at low...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-06, Vol.112 (25) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 25 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 112 |
creator | Rowley, William D. Parnell, William J. Abrahams, I. David Voisey, S. Ruth Lamb, John Etaix, Nicolas |
description | Slow sound is a frequently exploited phenomenon that metamaterials can induce in order to permit wave energy compression, redirection, imaging, sound absorption, and other special functionalities. Generally, however, such slow sound structures have a poor impedance match to air, particularly at low frequencies and consequently exhibit strong transmission only in narrow frequency ranges. This therefore strongly restricts their application in wave manipulation devices. In this work, we design a slow sound medium that halves the effective speed of sound in air over a wide range of low frequencies (hence our referral to the microstructure as “broadband”), whilst simultaneously maintaining a near impedance match to air. This is achieved with a rectangular array of acoustically rigid cylinders of elliptical cross section, a microstructure that is motivated by combining transformation acoustics with homogenization. Microstructural parameters are optimized in order to provide the required anisotropic material properties as well as near impedance matching. We then employ this microstructure in order to halve the size of a quarter-wavelength resonator (QWR) or equivalently to halve the resonant frequency of a QWR of a given size. This provides significant space savings in the context of low-frequency tonal noise attenuation in confined environments where the absorbing material is adjacent to the region in which sound propagates, such as in a duct. We employ the term “universal” since we envisage that this microstructure may be employed in a number of diverse applications involving sound manipulation. |
doi_str_mv | 10.1063/1.5022197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088309740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088309740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-a70f9a85cb9cc7c49c783ab84523cf08eb377ba00ce137e681a47d163ba37f1d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK4e_AYFTwpdk6Zt2qOsf2HBi57LNJ2uWdqkJmkXv71ZdtGD4GmY4ffePB4hl4wuGM35LVtkNElYKY7IjFEhYs5YcUxmlFIe52XGTsmZc5uwZgnnM2LuEQfUSq8jN9ZbmLBDvfYfEUgzOq9kZNEZDVpiNCmIevTQg0eroHPRVgVy1GpC66CLamugqUE3EXadGoI6HHslrXHejtKPFs_JSRuUeHGYc_L--PC2fI5Xr08vy7tVLHme-BgEbUsoMlmXUgqZllIUHOoiDallSwusuRA1UCqRcYF5wSAVDct5DVy0rOFzcrX3Haz5HNH5amNGq8PLKqFFwWkpUhqo6z21i-gsttVgVQ_2q2K02vVZserQZ2Bv9qyTyoNXRv_Ak7G_YDU07X_wX-dvXnKGwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088309740</pqid></control><display><type>article</type><title>Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructure</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Rowley, William D. ; Parnell, William J. ; Abrahams, I. David ; Voisey, S. Ruth ; Lamb, John ; Etaix, Nicolas</creator><creatorcontrib>Rowley, William D. ; Parnell, William J. ; Abrahams, I. David ; Voisey, S. Ruth ; Lamb, John ; Etaix, Nicolas</creatorcontrib><description>Slow sound is a frequently exploited phenomenon that metamaterials can induce in order to permit wave energy compression, redirection, imaging, sound absorption, and other special functionalities. Generally, however, such slow sound structures have a poor impedance match to air, particularly at low frequencies and consequently exhibit strong transmission only in narrow frequency ranges. This therefore strongly restricts their application in wave manipulation devices. In this work, we design a slow sound medium that halves the effective speed of sound in air over a wide range of low frequencies (hence our referral to the microstructure as “broadband”), whilst simultaneously maintaining a near impedance match to air. This is achieved with a rectangular array of acoustically rigid cylinders of elliptical cross section, a microstructure that is motivated by combining transformation acoustics with homogenization. Microstructural parameters are optimized in order to provide the required anisotropic material properties as well as near impedance matching. We then employ this microstructure in order to halve the size of a quarter-wavelength resonator (QWR) or equivalently to halve the resonant frequency of a QWR of a given size. This provides significant space savings in the context of low-frequency tonal noise attenuation in confined environments where the absorbing material is adjacent to the region in which sound propagates, such as in a duct. We employ the term “universal” since we envisage that this microstructure may be employed in a number of diverse applications involving sound manipulation.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5022197</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption ; Acoustic noise ; Acoustic resonance ; Acoustics ; Applied physics ; Attenuation ; Broadband ; Confined spaces ; Cylinders ; Frequency ranges ; Impedance matching ; Longitudinal waves ; Low frequencies ; Material properties ; Metamaterials ; Microstructure ; Order parameters ; Resonant frequencies ; Sound ; Sound transmission ; Wave power</subject><ispartof>Applied physics letters, 2018-06, Vol.112 (25)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-a70f9a85cb9cc7c49c783ab84523cf08eb377ba00ce137e681a47d163ba37f1d3</citedby><cites>FETCH-LOGICAL-c362t-a70f9a85cb9cc7c49c783ab84523cf08eb377ba00ce137e681a47d163ba37f1d3</cites><orcidid>0000-0002-3676-9466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5022197$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Rowley, William D.</creatorcontrib><creatorcontrib>Parnell, William J.</creatorcontrib><creatorcontrib>Abrahams, I. David</creatorcontrib><creatorcontrib>Voisey, S. Ruth</creatorcontrib><creatorcontrib>Lamb, John</creatorcontrib><creatorcontrib>Etaix, Nicolas</creatorcontrib><title>Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructure</title><title>Applied physics letters</title><description>Slow sound is a frequently exploited phenomenon that metamaterials can induce in order to permit wave energy compression, redirection, imaging, sound absorption, and other special functionalities. Generally, however, such slow sound structures have a poor impedance match to air, particularly at low frequencies and consequently exhibit strong transmission only in narrow frequency ranges. This therefore strongly restricts their application in wave manipulation devices. In this work, we design a slow sound medium that halves the effective speed of sound in air over a wide range of low frequencies (hence our referral to the microstructure as “broadband”), whilst simultaneously maintaining a near impedance match to air. This is achieved with a rectangular array of acoustically rigid cylinders of elliptical cross section, a microstructure that is motivated by combining transformation acoustics with homogenization. Microstructural parameters are optimized in order to provide the required anisotropic material properties as well as near impedance matching. We then employ this microstructure in order to halve the size of a quarter-wavelength resonator (QWR) or equivalently to halve the resonant frequency of a QWR of a given size. This provides significant space savings in the context of low-frequency tonal noise attenuation in confined environments where the absorbing material is adjacent to the region in which sound propagates, such as in a duct. We employ the term “universal” since we envisage that this microstructure may be employed in a number of diverse applications involving sound manipulation.</description><subject>Absorption</subject><subject>Acoustic noise</subject><subject>Acoustic resonance</subject><subject>Acoustics</subject><subject>Applied physics</subject><subject>Attenuation</subject><subject>Broadband</subject><subject>Confined spaces</subject><subject>Cylinders</subject><subject>Frequency ranges</subject><subject>Impedance matching</subject><subject>Longitudinal waves</subject><subject>Low frequencies</subject><subject>Material properties</subject><subject>Metamaterials</subject><subject>Microstructure</subject><subject>Order parameters</subject><subject>Resonant frequencies</subject><subject>Sound</subject><subject>Sound transmission</subject><subject>Wave power</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK4e_AYFTwpdk6Zt2qOsf2HBi57LNJ2uWdqkJmkXv71ZdtGD4GmY4ffePB4hl4wuGM35LVtkNElYKY7IjFEhYs5YcUxmlFIe52XGTsmZc5uwZgnnM2LuEQfUSq8jN9ZbmLBDvfYfEUgzOq9kZNEZDVpiNCmIevTQg0eroHPRVgVy1GpC66CLamugqUE3EXadGoI6HHslrXHejtKPFs_JSRuUeHGYc_L--PC2fI5Xr08vy7tVLHme-BgEbUsoMlmXUgqZllIUHOoiDallSwusuRA1UCqRcYF5wSAVDct5DVy0rOFzcrX3Haz5HNH5amNGq8PLKqFFwWkpUhqo6z21i-gsttVgVQ_2q2K02vVZserQZ2Bv9qyTyoNXRv_Ak7G_YDU07X_wX-dvXnKGwQ</recordid><startdate>20180618</startdate><enddate>20180618</enddate><creator>Rowley, William D.</creator><creator>Parnell, William J.</creator><creator>Abrahams, I. David</creator><creator>Voisey, S. Ruth</creator><creator>Lamb, John</creator><creator>Etaix, Nicolas</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3676-9466</orcidid></search><sort><creationdate>20180618</creationdate><title>Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructure</title><author>Rowley, William D. ; Parnell, William J. ; Abrahams, I. David ; Voisey, S. Ruth ; Lamb, John ; Etaix, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-a70f9a85cb9cc7c49c783ab84523cf08eb377ba00ce137e681a47d163ba37f1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Acoustic noise</topic><topic>Acoustic resonance</topic><topic>Acoustics</topic><topic>Applied physics</topic><topic>Attenuation</topic><topic>Broadband</topic><topic>Confined spaces</topic><topic>Cylinders</topic><topic>Frequency ranges</topic><topic>Impedance matching</topic><topic>Longitudinal waves</topic><topic>Low frequencies</topic><topic>Material properties</topic><topic>Metamaterials</topic><topic>Microstructure</topic><topic>Order parameters</topic><topic>Resonant frequencies</topic><topic>Sound</topic><topic>Sound transmission</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowley, William D.</creatorcontrib><creatorcontrib>Parnell, William J.</creatorcontrib><creatorcontrib>Abrahams, I. David</creatorcontrib><creatorcontrib>Voisey, S. Ruth</creatorcontrib><creatorcontrib>Lamb, John</creatorcontrib><creatorcontrib>Etaix, Nicolas</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowley, William D.</au><au>Parnell, William J.</au><au>Abrahams, I. David</au><au>Voisey, S. Ruth</au><au>Lamb, John</au><au>Etaix, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructure</atitle><jtitle>Applied physics letters</jtitle><date>2018-06-18</date><risdate>2018</risdate><volume>112</volume><issue>25</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Slow sound is a frequently exploited phenomenon that metamaterials can induce in order to permit wave energy compression, redirection, imaging, sound absorption, and other special functionalities. Generally, however, such slow sound structures have a poor impedance match to air, particularly at low frequencies and consequently exhibit strong transmission only in narrow frequency ranges. This therefore strongly restricts their application in wave manipulation devices. In this work, we design a slow sound medium that halves the effective speed of sound in air over a wide range of low frequencies (hence our referral to the microstructure as “broadband”), whilst simultaneously maintaining a near impedance match to air. This is achieved with a rectangular array of acoustically rigid cylinders of elliptical cross section, a microstructure that is motivated by combining transformation acoustics with homogenization. Microstructural parameters are optimized in order to provide the required anisotropic material properties as well as near impedance matching. We then employ this microstructure in order to halve the size of a quarter-wavelength resonator (QWR) or equivalently to halve the resonant frequency of a QWR of a given size. This provides significant space savings in the context of low-frequency tonal noise attenuation in confined environments where the absorbing material is adjacent to the region in which sound propagates, such as in a duct. We employ the term “universal” since we envisage that this microstructure may be employed in a number of diverse applications involving sound manipulation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5022197</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3676-9466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-06, Vol.112 (25) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2088309740 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorption Acoustic noise Acoustic resonance Acoustics Applied physics Attenuation Broadband Confined spaces Cylinders Frequency ranges Impedance matching Longitudinal waves Low frequencies Material properties Metamaterials Microstructure Order parameters Resonant frequencies Sound Sound transmission Wave power |
title | Deepening subwavelength acoustic resonance via metamaterials with universal broadband elliptical microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deepening%20subwavelength%20acoustic%20resonance%20via%20metamaterials%20with%20universal%20broadband%20elliptical%20microstructure&rft.jtitle=Applied%20physics%20letters&rft.au=Rowley,%20William%20D.&rft.date=2018-06-18&rft.volume=112&rft.issue=25&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5022197&rft_dat=%3Cproquest_cross%3E2088309740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088309740&rft_id=info:pmid/&rfr_iscdi=true |