Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems

We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1998-02
Hauptverfasser: Chandre, C, Govin, M, Jauslin, H R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chandre, C
Govin, M
Jauslin, H R
description We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a much more efficient method that allows to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties.
doi_str_mv 10.48550/arxiv.9802022
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088265785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088265785</sourcerecordid><originalsourceid>FETCH-proquest_journals_20882657853</originalsourceid><addsrcrecordid>eNqNjEFPAjEQRhsSE4hy5TyJ52KZpVCPaFQM4aLcyUSLFLqdddrdqL_ePfgDPL3kvS-fUpOZmc6dteaG5Ct001tn0CAO1AiraqbdHHGoxjmfjDG4WKK11UilDceaP1i40ytJHN_1lrMXePGJpaYYfqgETvpJuG1g1TTC9HaEwlCOHu7E07n3fIDn1JEESgV2LAFCgjXVIRZOvYTX71x8na_UxYFi9uM_Xqrrx4fd_Vr3t5-tz2V_4lZSn_ZonMOFXTpb_W_1C-REUDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088265785</pqid></control><display><type>article</type><title>Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems</title><source>Free E- Journals</source><creator>Chandre, C ; Govin, M ; Jauslin, H R</creator><creatorcontrib>Chandre, C ; Govin, M ; Jauslin, H R</creatorcontrib><description>We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a much more efficient method that allows to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9802022</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Breakup ; Coupling ; Hamiltonian functions ; Invariants ; Iterative methods ; Toruses ; Transformations</subject><ispartof>arXiv.org, 1998-02</ispartof><rights>1998. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Chandre, C</creatorcontrib><creatorcontrib>Govin, M</creatorcontrib><creatorcontrib>Jauslin, H R</creatorcontrib><title>Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems</title><title>arXiv.org</title><description>We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a much more efficient method that allows to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties.</description><subject>Breakup</subject><subject>Coupling</subject><subject>Hamiltonian functions</subject><subject>Invariants</subject><subject>Iterative methods</subject><subject>Toruses</subject><subject>Transformations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEFPAjEQRhsSE4hy5TyJ52KZpVCPaFQM4aLcyUSLFLqdddrdqL_ePfgDPL3kvS-fUpOZmc6dteaG5Ct001tn0CAO1AiraqbdHHGoxjmfjDG4WKK11UilDceaP1i40ytJHN_1lrMXePGJpaYYfqgETvpJuG1g1TTC9HaEwlCOHu7E07n3fIDn1JEESgV2LAFCgjXVIRZOvYTX71x8na_UxYFi9uM_Xqrrx4fd_Vr3t5-tz2V_4lZSn_ZonMOFXTpb_W_1C-REUDc</recordid><startdate>19980225</startdate><enddate>19980225</enddate><creator>Chandre, C</creator><creator>Govin, M</creator><creator>Jauslin, H R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19980225</creationdate><title>Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems</title><author>Chandre, C ; Govin, M ; Jauslin, H R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20882657853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Breakup</topic><topic>Coupling</topic><topic>Hamiltonian functions</topic><topic>Invariants</topic><topic>Iterative methods</topic><topic>Toruses</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Chandre, C</creatorcontrib><creatorcontrib>Govin, M</creatorcontrib><creatorcontrib>Jauslin, H R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandre, C</au><au>Govin, M</au><au>Jauslin, H R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems</atitle><jtitle>arXiv.org</jtitle><date>1998-02-25</date><risdate>1998</risdate><eissn>2331-8422</eissn><abstract>We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a much more efficient method that allows to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9802022</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 1998-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2088265785
source Free E- Journals
subjects Breakup
Coupling
Hamiltonian functions
Invariants
Iterative methods
Toruses
Transformations
title Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Kolmogorov-Arnold-Moser%20Renormalization-Group%20Approach%20to%20the%20Breakup%20of%20Invariant%20Tori%20in%20Hamiltonian%20Systems&rft.jtitle=arXiv.org&rft.au=Chandre,%20C&rft.date=1998-02-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9802022&rft_dat=%3Cproquest%3E2088265785%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088265785&rft_id=info:pmid/&rfr_iscdi=true