Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems
We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1998-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chandre, C Govin, M Jauslin, H R |
description | We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a much more efficient method that allows to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties. |
doi_str_mv | 10.48550/arxiv.9802022 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088265785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088265785</sourcerecordid><originalsourceid>FETCH-proquest_journals_20882657853</originalsourceid><addsrcrecordid>eNqNjEFPAjEQRhsSE4hy5TyJ52KZpVCPaFQM4aLcyUSLFLqdddrdqL_ePfgDPL3kvS-fUpOZmc6dteaG5Ct001tn0CAO1AiraqbdHHGoxjmfjDG4WKK11UilDceaP1i40ytJHN_1lrMXePGJpaYYfqgETvpJuG1g1TTC9HaEwlCOHu7E07n3fIDn1JEESgV2LAFCgjXVIRZOvYTX71x8na_UxYFi9uM_Xqrrx4fd_Vr3t5-tz2V_4lZSn_ZonMOFXTpb_W_1C-REUDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088265785</pqid></control><display><type>article</type><title>Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems</title><source>Free E- Journals</source><creator>Chandre, C ; Govin, M ; Jauslin, H R</creator><creatorcontrib>Chandre, C ; Govin, M ; Jauslin, H R</creatorcontrib><description>We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a much more efficient method that allows to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9802022</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Breakup ; Coupling ; Hamiltonian functions ; Invariants ; Iterative methods ; Toruses ; Transformations</subject><ispartof>arXiv.org, 1998-02</ispartof><rights>1998. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Chandre, C</creatorcontrib><creatorcontrib>Govin, M</creatorcontrib><creatorcontrib>Jauslin, H R</creatorcontrib><title>Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems</title><title>arXiv.org</title><description>We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a much more efficient method that allows to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties.</description><subject>Breakup</subject><subject>Coupling</subject><subject>Hamiltonian functions</subject><subject>Invariants</subject><subject>Iterative methods</subject><subject>Toruses</subject><subject>Transformations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjEFPAjEQRhsSE4hy5TyJ52KZpVCPaFQM4aLcyUSLFLqdddrdqL_ePfgDPL3kvS-fUpOZmc6dteaG5Ct001tn0CAO1AiraqbdHHGoxjmfjDG4WKK11UilDceaP1i40ytJHN_1lrMXePGJpaYYfqgETvpJuG1g1TTC9HaEwlCOHu7E07n3fIDn1JEESgV2LAFCgjXVIRZOvYTX71x8na_UxYFi9uM_Xqrrx4fd_Vr3t5-tz2V_4lZSn_ZonMOFXTpb_W_1C-REUDc</recordid><startdate>19980225</startdate><enddate>19980225</enddate><creator>Chandre, C</creator><creator>Govin, M</creator><creator>Jauslin, H R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19980225</creationdate><title>Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems</title><author>Chandre, C ; Govin, M ; Jauslin, H R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20882657853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Breakup</topic><topic>Coupling</topic><topic>Hamiltonian functions</topic><topic>Invariants</topic><topic>Iterative methods</topic><topic>Toruses</topic><topic>Transformations</topic><toplevel>online_resources</toplevel><creatorcontrib>Chandre, C</creatorcontrib><creatorcontrib>Govin, M</creatorcontrib><creatorcontrib>Jauslin, H R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandre, C</au><au>Govin, M</au><au>Jauslin, H R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems</atitle><jtitle>arXiv.org</jtitle><date>1998-02-25</date><risdate>1998</risdate><eissn>2331-8422</eissn><abstract>We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of KAM theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a much more efficient method that allows to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9802022</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 1998-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2088265785 |
source | Free E- Journals |
subjects | Breakup Coupling Hamiltonian functions Invariants Iterative methods Toruses Transformations |
title | Kolmogorov-Arnold-Moser Renormalization-Group Approach to the Breakup of Invariant Tori in Hamiltonian Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Kolmogorov-Arnold-Moser%20Renormalization-Group%20Approach%20to%20the%20Breakup%20of%20Invariant%20Tori%20in%20Hamiltonian%20Systems&rft.jtitle=arXiv.org&rft.au=Chandre,%20C&rft.date=1998-02-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9802022&rft_dat=%3Cproquest%3E2088265785%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088265785&rft_id=info:pmid/&rfr_iscdi=true |