Spin susceptibility of interacting electrons in one dimension: Luttinger liquid and lattice effects

The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility \(\chi (T) \) approaches zero temperature with an infinite slo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1999-03
Hauptverfasser: Nélisse, H, Bourbonnais, C, Touchette, H, Vilk, Y M, Tremblay, A -M S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nélisse, H
Bourbonnais, C
Touchette, H
Vilk, Y M
Tremblay, A -M S
description The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility \(\chi (T) \) approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given.
doi_str_mv 10.48550/arxiv.9903046
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088225613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088225613</sourcerecordid><originalsourceid>FETCH-proquest_journals_20882256133</originalsourceid><addsrcrecordid>eNqNi0FLAzEQRkNBsGivPQ_03JpNNuvWqygevNl7SbOzMiVOtplE9N-7gj_A0wfve0-pdaN3be-cvvP5iz53-722uu0WammsbbZ9a8y1WomctdamuzfO2aUKbxMxSJWAU6ETRSrfkEYgLph9KMTvgBFDyYllppAYYaAPZKHED_Bay6-DGSJdKg3geYDoZxgQcBznUm7V1eij4Opvb9Tm-enw-LKdcrpUlHI8p5p5vo5G970xrmus_Z_1A4OpTH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088225613</pqid></control><display><type>article</type><title>Spin susceptibility of interacting electrons in one dimension: Luttinger liquid and lattice effects</title><source>Freely Accessible Journals</source><creator>Nélisse, H ; Bourbonnais, C ; Touchette, H ; Vilk, Y M ; Tremblay, A -M S</creator><creatorcontrib>Nélisse, H ; Bourbonnais, C ; Touchette, H ; Vilk, Y M ; Tremblay, A -M S</creatorcontrib><description>The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility \(\chi (T) \) approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9903046</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antiferromagnetism ; Compressibility ; Computer simulation ; Electron spin ; Electrons ; Fermi liquids ; Magnetic permeability ; Temperature dependence</subject><ispartof>arXiv.org, 1999-03</ispartof><rights>1999. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Nélisse, H</creatorcontrib><creatorcontrib>Bourbonnais, C</creatorcontrib><creatorcontrib>Touchette, H</creatorcontrib><creatorcontrib>Vilk, Y M</creatorcontrib><creatorcontrib>Tremblay, A -M S</creatorcontrib><title>Spin susceptibility of interacting electrons in one dimension: Luttinger liquid and lattice effects</title><title>arXiv.org</title><description>The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility \(\chi (T) \) approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given.</description><subject>Antiferromagnetism</subject><subject>Compressibility</subject><subject>Computer simulation</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Fermi liquids</subject><subject>Magnetic permeability</subject><subject>Temperature dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0FLAzEQRkNBsGivPQ_03JpNNuvWqygevNl7SbOzMiVOtplE9N-7gj_A0wfve0-pdaN3be-cvvP5iz53-722uu0WammsbbZ9a8y1WomctdamuzfO2aUKbxMxSJWAU6ETRSrfkEYgLph9KMTvgBFDyYllppAYYaAPZKHED_Bay6-DGSJdKg3geYDoZxgQcBznUm7V1eij4Opvb9Tm-enw-LKdcrpUlHI8p5p5vo5G970xrmus_Z_1A4OpTH4</recordid><startdate>19990302</startdate><enddate>19990302</enddate><creator>Nélisse, H</creator><creator>Bourbonnais, C</creator><creator>Touchette, H</creator><creator>Vilk, Y M</creator><creator>Tremblay, A -M S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19990302</creationdate><title>Spin susceptibility of interacting electrons in one dimension: Luttinger liquid and lattice effects</title><author>Nélisse, H ; Bourbonnais, C ; Touchette, H ; Vilk, Y M ; Tremblay, A -M S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20882256133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Antiferromagnetism</topic><topic>Compressibility</topic><topic>Computer simulation</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Fermi liquids</topic><topic>Magnetic permeability</topic><topic>Temperature dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Nélisse, H</creatorcontrib><creatorcontrib>Bourbonnais, C</creatorcontrib><creatorcontrib>Touchette, H</creatorcontrib><creatorcontrib>Vilk, Y M</creatorcontrib><creatorcontrib>Tremblay, A -M S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nélisse, H</au><au>Bourbonnais, C</au><au>Touchette, H</au><au>Vilk, Y M</au><au>Tremblay, A -M S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spin susceptibility of interacting electrons in one dimension: Luttinger liquid and lattice effects</atitle><jtitle>arXiv.org</jtitle><date>1999-03-02</date><risdate>1999</risdate><eissn>2331-8422</eissn><abstract>The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility \(\chi (T) \) approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9903046</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 1999-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2088225613
source Freely Accessible Journals
subjects Antiferromagnetism
Compressibility
Computer simulation
Electron spin
Electrons
Fermi liquids
Magnetic permeability
Temperature dependence
title Spin susceptibility of interacting electrons in one dimension: Luttinger liquid and lattice effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spin%20susceptibility%20of%20interacting%20electrons%20in%20one%20dimension:%20Luttinger%20liquid%20and%20lattice%20effects&rft.jtitle=arXiv.org&rft.au=N%C3%A9lisse,%20H&rft.date=1999-03-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9903046&rft_dat=%3Cproquest%3E2088225613%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088225613&rft_id=info:pmid/&rfr_iscdi=true