Torsional Directed Walks, Entropic Elasticity, and DNA Twist Stiffness

DNA and other biopolymers differ from classical polymers due to their torsional stiffness. This property changes the statistical character of their conformations under tension from a classical random walk to a problem we call the `torsional directed walk'. Motivated by a recent experiment on si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1997-08
Hauptverfasser: Moroz, J David, Nelson, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA and other biopolymers differ from classical polymers due to their torsional stiffness. This property changes the statistical character of their conformations under tension from a classical random walk to a problem we call the `torsional directed walk'. Motivated by a recent experiment on single lambda-DNA molecules [Strick et al., Science 271 (1996) 1835], we formulate the torsional directed walk problem and solve it analytically in the appropriate force regime. Our technique affords a direct physical determination of the microscopic twist stiffness C and twist-stretch coupling D relevant for DNA functionality. The theory quantitatively fits existing experimental data for relative extension as a function of overtwist over a wide range of applied force; fitting to the experimental data yields the numerical values C=120nm and D=50nm. Future experiments will refine these values. We also predict that the phenomenon of reduction of effective twist stiffness by bend fluctuations should be testable in future single-molecule experiments, and we give its analytic form.
ISSN:2331-8422
DOI:10.48550/arxiv.9708158