Geometrical Approach to the Gauge Field Mass Problem. Possible Reasons for which the Higgs Bosons Are Not Observable

In the Kaluza - Klein approach the (4+d)-dimensional Einstein--Hilbert gravity action is considered. The extra d-dimensional manifold V_d is a Riemann space with the d-parametric group of isometry \(G_d\) which acts on V_d by the left shifts and with arbitrary nondegenerated left-invariant metric g_...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2001-06
1. Verfasser: Peresun'ko, Yu P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Peresun'ko, Yu P
description In the Kaluza - Klein approach the (4+d)-dimensional Einstein--Hilbert gravity action is considered. The extra d-dimensional manifold V_d is a Riemann space with the d-parametric group of isometry \(G_d\) which acts on V_d by the left shifts and with arbitrary nondegenerated left-invariant metric g_{ab}. The gauge fields A_{\mu} are introduced as the affine connection coefficients of the fibre bundle with V_d being the fibre. The effective Lagrangian as invariant integral over extra-dimensional manifold of the curvative scalar of mentioned structure is obtained. It is shown that such effective Lagrangian contains beside the square of gauge field strength tensor also quadratic form of A_{\mu} and all other fields have only pure gauge degrees of freedom when g_{ab}. satisfy some conditions. This conditions may be regarded as generalization of the General Relativity Principle to the extra dimensions. The eigenvalues of the quadratic form of A_{\mu} are calculated for the case of gauge group SO(3). It is shown that they are not equal to zero in the case when g_{ab} is not proportional to the unit matrix.
doi_str_mv 10.48550/arxiv.0007085
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088135444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088135444</sourcerecordid><originalsourceid>FETCH-proquest_journals_20881354443</originalsourceid><addsrcrecordid>eNqNjU1rAjEURUNBUKpb1w9cO2byodnaUnXTVop7ifqciYw-m5fR_vympT-gq3vh3MMVYljKwjhr5cTHr3ArpJQz6eyD6Cmty7EzSnXFgPmUgZrOlLW6J9IS6Ywphr1vYH69RvL7GhJBqhGWvq0QFgGbA7x6ZlhH2jV4LmBNzCFX-EDPdGE4UoR7HX7cLK5CVTE80S-aR4Q3SvC-Y4w3n62-6Bx9wzj4y0cxWrxsnlfjfP_ZIqftidp4yWirpHOltsYY_b_VN9XyUIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088135444</pqid></control><display><type>article</type><title>Geometrical Approach to the Gauge Field Mass Problem. Possible Reasons for which the Higgs Bosons Are Not Observable</title><source>Free E- Journals</source><creator>Peresun'ko, Yu P</creator><creatorcontrib>Peresun'ko, Yu P</creatorcontrib><description>In the Kaluza - Klein approach the (4+d)-dimensional Einstein--Hilbert gravity action is considered. The extra d-dimensional manifold V_d is a Riemann space with the d-parametric group of isometry \(G_d\) which acts on V_d by the left shifts and with arbitrary nondegenerated left-invariant metric g_{ab}. The gauge fields A_{\mu} are introduced as the affine connection coefficients of the fibre bundle with V_d being the fibre. The effective Lagrangian as invariant integral over extra-dimensional manifold of the curvative scalar of mentioned structure is obtained. It is shown that such effective Lagrangian contains beside the square of gauge field strength tensor also quadratic form of A_{\mu} and all other fields have only pure gauge degrees of freedom when g_{ab}. satisfy some conditions. This conditions may be regarded as generalization of the General Relativity Principle to the extra dimensions. The eigenvalues of the quadratic form of A_{\mu} are calculated for the case of gauge group SO(3). It is shown that they are not equal to zero in the case when g_{ab} is not proportional to the unit matrix.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0007085</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bosons ; Eigenvalues ; Field strength ; Higgs bosons ; Invariants ; Mathematical analysis ; Quadratic forms ; Relativity ; Riemann manifold ; Tensors</subject><ispartof>arXiv.org, 2001-06</ispartof><rights>2001. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782,27908</link.rule.ids></links><search><creatorcontrib>Peresun'ko, Yu P</creatorcontrib><title>Geometrical Approach to the Gauge Field Mass Problem. Possible Reasons for which the Higgs Bosons Are Not Observable</title><title>arXiv.org</title><description>In the Kaluza - Klein approach the (4+d)-dimensional Einstein--Hilbert gravity action is considered. The extra d-dimensional manifold V_d is a Riemann space with the d-parametric group of isometry \(G_d\) which acts on V_d by the left shifts and with arbitrary nondegenerated left-invariant metric g_{ab}. The gauge fields A_{\mu} are introduced as the affine connection coefficients of the fibre bundle with V_d being the fibre. The effective Lagrangian as invariant integral over extra-dimensional manifold of the curvative scalar of mentioned structure is obtained. It is shown that such effective Lagrangian contains beside the square of gauge field strength tensor also quadratic form of A_{\mu} and all other fields have only pure gauge degrees of freedom when g_{ab}. satisfy some conditions. This conditions may be regarded as generalization of the General Relativity Principle to the extra dimensions. The eigenvalues of the quadratic form of A_{\mu} are calculated for the case of gauge group SO(3). It is shown that they are not equal to zero in the case when g_{ab} is not proportional to the unit matrix.</description><subject>Bosons</subject><subject>Eigenvalues</subject><subject>Field strength</subject><subject>Higgs bosons</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Quadratic forms</subject><subject>Relativity</subject><subject>Riemann manifold</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjU1rAjEURUNBUKpb1w9cO2byodnaUnXTVop7ifqciYw-m5fR_vympT-gq3vh3MMVYljKwjhr5cTHr3ArpJQz6eyD6Cmty7EzSnXFgPmUgZrOlLW6J9IS6Ywphr1vYH69RvL7GhJBqhGWvq0QFgGbA7x6ZlhH2jV4LmBNzCFX-EDPdGE4UoR7HX7cLK5CVTE80S-aR4Q3SvC-Y4w3n62-6Bx9wzj4y0cxWrxsnlfjfP_ZIqftidp4yWirpHOltsYY_b_VN9XyUIY</recordid><startdate>20010605</startdate><enddate>20010605</enddate><creator>Peresun'ko, Yu P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20010605</creationdate><title>Geometrical Approach to the Gauge Field Mass Problem. Possible Reasons for which the Higgs Bosons Are Not Observable</title><author>Peresun'ko, Yu P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20881354443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bosons</topic><topic>Eigenvalues</topic><topic>Field strength</topic><topic>Higgs bosons</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Quadratic forms</topic><topic>Relativity</topic><topic>Riemann manifold</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Peresun'ko, Yu P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peresun'ko, Yu P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Geometrical Approach to the Gauge Field Mass Problem. Possible Reasons for which the Higgs Bosons Are Not Observable</atitle><jtitle>arXiv.org</jtitle><date>2001-06-05</date><risdate>2001</risdate><eissn>2331-8422</eissn><abstract>In the Kaluza - Klein approach the (4+d)-dimensional Einstein--Hilbert gravity action is considered. The extra d-dimensional manifold V_d is a Riemann space with the d-parametric group of isometry \(G_d\) which acts on V_d by the left shifts and with arbitrary nondegenerated left-invariant metric g_{ab}. The gauge fields A_{\mu} are introduced as the affine connection coefficients of the fibre bundle with V_d being the fibre. The effective Lagrangian as invariant integral over extra-dimensional manifold of the curvative scalar of mentioned structure is obtained. It is shown that such effective Lagrangian contains beside the square of gauge field strength tensor also quadratic form of A_{\mu} and all other fields have only pure gauge degrees of freedom when g_{ab}. satisfy some conditions. This conditions may be regarded as generalization of the General Relativity Principle to the extra dimensions. The eigenvalues of the quadratic form of A_{\mu} are calculated for the case of gauge group SO(3). It is shown that they are not equal to zero in the case when g_{ab} is not proportional to the unit matrix.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0007085</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2001-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2088135444
source Free E- Journals
subjects Bosons
Eigenvalues
Field strength
Higgs bosons
Invariants
Mathematical analysis
Quadratic forms
Relativity
Riemann manifold
Tensors
title Geometrical Approach to the Gauge Field Mass Problem. Possible Reasons for which the Higgs Bosons Are Not Observable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Geometrical%20Approach%20to%20the%20Gauge%20Field%20Mass%20Problem.%20Possible%20Reasons%20for%20which%20the%20Higgs%20Bosons%20Are%20Not%20Observable&rft.jtitle=arXiv.org&rft.au=Peresun'ko,%20Yu%20P&rft.date=2001-06-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0007085&rft_dat=%3Cproquest%3E2088135444%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088135444&rft_id=info:pmid/&rfr_iscdi=true