Growth Kinetics for a System with Conserved Order Parameter: Off Critical Quenches

The theory of growth kinetics developed previously is extended to the asymmetric case of off-critical quenches for systems with a conserved scalar order parameter. In this instance the new parameter \(M\), the average global value of the order parameter, enters the theory. For \(M=0\) one has critic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1994-11
Hauptverfasser: Mazenko, G F, Wickham, R A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mazenko, G F
Wickham, R A
description The theory of growth kinetics developed previously is extended to the asymmetric case of off-critical quenches for systems with a conserved scalar order parameter. In this instance the new parameter \(M\), the average global value of the order parameter, enters the theory. For \(M=0\) one has critical quenches, while for sufficiently large \(M\) one approaches the coexistence curve. For all \(M\) the theory supports a scaling solution for the order parameter correlation function with the Lifshitz-Slyozov-Wagner growth law \(L \sim t^{1/3}\). The theoretically determined scaling function depends only on the spatial dimensionality \(d\) and the parameter \(M\), and is determined explicitly here in two and three dimensions. Near the coexistence curve oscillations in the scaling function are suppressed. The structure factor displays Porod's law \(Q^{-(d+1)}\) behaviour at large scaled wavenumbers \(Q\), and \(Q^{4}\) behaviour at small scaled wavenumbers, for all \(M\). The peak in the structure factor widens as \(M\) increases and develops a significant tail for quenches near the coexistence curve. This is in qualitative agreement with simulations.
doi_str_mv 10.48550/arxiv.9411045
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087914873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087914873</sourcerecordid><originalsourceid>FETCH-proquest_journals_20879148733</originalsourceid><addsrcrecordid>eNqNi7sOAUEUQCcSCUGrvoka87RLu_FIFJ69TLgbI-xwZ9bj723hA1SnOOcw1hV8oFNj-NDS2z0HYy0E16bGmlIp0U-1lA3WCeHCOZejRBqjmmw7J_-KZ1i6AqM7Bsg9gYXdJ0S8wctVKvNFQHriCVZ0QoK1JXvDiDSBVZ5DRq4a7RU2JRbHM4Y2q-f2GrDzY4v1ZtN9tujfyT9KDPFw8SUVlTpIniZjodNEqf-qL2etRNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087914873</pqid></control><display><type>article</type><title>Growth Kinetics for a System with Conserved Order Parameter: Off Critical Quenches</title><source>Free E- Journals</source><creator>Mazenko, G F ; Wickham, R A</creator><creatorcontrib>Mazenko, G F ; Wickham, R A</creatorcontrib><description>The theory of growth kinetics developed previously is extended to the asymmetric case of off-critical quenches for systems with a conserved scalar order parameter. In this instance the new parameter \(M\), the average global value of the order parameter, enters the theory. For \(M=0\) one has critical quenches, while for sufficiently large \(M\) one approaches the coexistence curve. For all \(M\) the theory supports a scaling solution for the order parameter correlation function with the Lifshitz-Slyozov-Wagner growth law \(L \sim t^{1/3}\). The theoretically determined scaling function depends only on the spatial dimensionality \(d\) and the parameter \(M\), and is determined explicitly here in two and three dimensions. Near the coexistence curve oscillations in the scaling function are suppressed. The structure factor displays Porod's law \(Q^{-(d+1)}\) behaviour at large scaled wavenumbers \(Q\), and \(Q^{4}\) behaviour at small scaled wavenumbers, for all \(M\). The peak in the structure factor widens as \(M\) increases and develops a significant tail for quenches near the coexistence curve. This is in qualitative agreement with simulations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9411045</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Order parameters ; Qualitative analysis ; Scaling ; Structure factor</subject><ispartof>arXiv.org, 1994-11</ispartof><rights>1994. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Mazenko, G F</creatorcontrib><creatorcontrib>Wickham, R A</creatorcontrib><title>Growth Kinetics for a System with Conserved Order Parameter: Off Critical Quenches</title><title>arXiv.org</title><description>The theory of growth kinetics developed previously is extended to the asymmetric case of off-critical quenches for systems with a conserved scalar order parameter. In this instance the new parameter \(M\), the average global value of the order parameter, enters the theory. For \(M=0\) one has critical quenches, while for sufficiently large \(M\) one approaches the coexistence curve. For all \(M\) the theory supports a scaling solution for the order parameter correlation function with the Lifshitz-Slyozov-Wagner growth law \(L \sim t^{1/3}\). The theoretically determined scaling function depends only on the spatial dimensionality \(d\) and the parameter \(M\), and is determined explicitly here in two and three dimensions. Near the coexistence curve oscillations in the scaling function are suppressed. The structure factor displays Porod's law \(Q^{-(d+1)}\) behaviour at large scaled wavenumbers \(Q\), and \(Q^{4}\) behaviour at small scaled wavenumbers, for all \(M\). The peak in the structure factor widens as \(M\) increases and develops a significant tail for quenches near the coexistence curve. This is in qualitative agreement with simulations.</description><subject>Order parameters</subject><subject>Qualitative analysis</subject><subject>Scaling</subject><subject>Structure factor</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi7sOAUEUQCcSCUGrvoka87RLu_FIFJ69TLgbI-xwZ9bj723hA1SnOOcw1hV8oFNj-NDS2z0HYy0E16bGmlIp0U-1lA3WCeHCOZejRBqjmmw7J_-KZ1i6AqM7Bsg9gYXdJ0S8wctVKvNFQHriCVZ0QoK1JXvDiDSBVZ5DRq4a7RU2JRbHM4Y2q-f2GrDzY4v1ZtN9tujfyT9KDPFw8SUVlTpIniZjodNEqf-qL2etRNM</recordid><startdate>19941111</startdate><enddate>19941111</enddate><creator>Mazenko, G F</creator><creator>Wickham, R A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19941111</creationdate><title>Growth Kinetics for a System with Conserved Order Parameter: Off Critical Quenches</title><author>Mazenko, G F ; Wickham, R A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20879148733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Order parameters</topic><topic>Qualitative analysis</topic><topic>Scaling</topic><topic>Structure factor</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazenko, G F</creatorcontrib><creatorcontrib>Wickham, R A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazenko, G F</au><au>Wickham, R A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Growth Kinetics for a System with Conserved Order Parameter: Off Critical Quenches</atitle><jtitle>arXiv.org</jtitle><date>1994-11-11</date><risdate>1994</risdate><eissn>2331-8422</eissn><abstract>The theory of growth kinetics developed previously is extended to the asymmetric case of off-critical quenches for systems with a conserved scalar order parameter. In this instance the new parameter \(M\), the average global value of the order parameter, enters the theory. For \(M=0\) one has critical quenches, while for sufficiently large \(M\) one approaches the coexistence curve. For all \(M\) the theory supports a scaling solution for the order parameter correlation function with the Lifshitz-Slyozov-Wagner growth law \(L \sim t^{1/3}\). The theoretically determined scaling function depends only on the spatial dimensionality \(d\) and the parameter \(M\), and is determined explicitly here in two and three dimensions. Near the coexistence curve oscillations in the scaling function are suppressed. The structure factor displays Porod's law \(Q^{-(d+1)}\) behaviour at large scaled wavenumbers \(Q\), and \(Q^{4}\) behaviour at small scaled wavenumbers, for all \(M\). The peak in the structure factor widens as \(M\) increases and develops a significant tail for quenches near the coexistence curve. This is in qualitative agreement with simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9411045</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 1994-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087914873
source Free E- Journals
subjects Order parameters
Qualitative analysis
Scaling
Structure factor
title Growth Kinetics for a System with Conserved Order Parameter: Off Critical Quenches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Growth%20Kinetics%20for%20a%20System%20with%20Conserved%20Order%20Parameter:%20Off%20Critical%20Quenches&rft.jtitle=arXiv.org&rft.au=Mazenko,%20G%20F&rft.date=1994-11-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9411045&rft_dat=%3Cproquest%3E2087914873%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087914873&rft_id=info:pmid/&rfr_iscdi=true