Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors

Normality and static variance are very common assumptions in traditional financial theories and risk modeling for mathematical convenience. Empirical evidence suggests otherwise. With the rapid growth in volatility-based financial innovations and market, it is beneficial and essential to look beyond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2018-08, Vol.52 (2), p.459-477
Hauptverfasser: Kang, Shuaimin, Liu, Guangying, Qi, Howard, Wang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 2
container_start_page 459
container_title Computational economics
container_volume 52
creator Kang, Shuaimin
Liu, Guangying
Qi, Howard
Wang, Min
description Normality and static variance are very common assumptions in traditional financial theories and risk modeling for mathematical convenience. Empirical evidence suggests otherwise. With the rapid growth in volatility-based financial innovations and market, it is beneficial and essential to look beyond the traditional restrictive assumptions. This paper discusses Bayesian analysis of the variance changepoints problem in linear models with flexible error distributions. Specifically, we consider the class of scale mixtures of normal distributions, which not only exhibits symmetric heavy-tailed behavior, but also includes many common error distributions as special cases, such as the normal and Student- t distributions. Our proposed approach can reduce the influence of atypical observations and thus offer a robust technique for detecting the variance changepoints in many financial and economic data. We propose an efficient Gibbs sampling procedure to generate posterior samples and in turn to perform Bayesian inference. Simulation studies are conducted to demonstrate satisfactory performance of the proposed methodology. The closing price data set from the US stocks database is analyzed for illustrative purposes.
doi_str_mv 10.1007/s10614-017-9690-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2087840696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087840696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-2edebcd028de4d8627940e21205c3d88363ad7a1b120e6d3a707b7ddd975fb33</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wF3AdfQl85FkqbVaoeLC4sZFyExebUo7U5OpMv_elBFcubrwuOc-OIRccrjmAPImcih5zoBLpksNTB2RES-kYFrL_JiMQAvJJGh9Ss5iXANAwYUYkfc722P0tqFvNqSokU5WtvnAXeubjt5jh3Xn24b6hs59gzbQ59bhJtJv363oa7_dYhd8TWdov3q2sH6Djk5DaEM8JydLu4l48ZtjsniYLiYzNn95fJrczlmdKd4xgQ6r2oFQDnOnSiF1Dii4gKLOnFJZmVknLa_SBUuXWQmyks45LYtllWVjcjXM7kL7ucfYmXW7D036aAQoqXIodZlafGjVoY0x4NLsgt_a0BsO5qDQDApNUmgOCo1KjBiYmLrJSfhb_h_6ATP4dC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087840696</pqid></control><display><type>article</type><title>Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kang, Shuaimin ; Liu, Guangying ; Qi, Howard ; Wang, Min</creator><creatorcontrib>Kang, Shuaimin ; Liu, Guangying ; Qi, Howard ; Wang, Min</creatorcontrib><description>Normality and static variance are very common assumptions in traditional financial theories and risk modeling for mathematical convenience. Empirical evidence suggests otherwise. With the rapid growth in volatility-based financial innovations and market, it is beneficial and essential to look beyond the traditional restrictive assumptions. This paper discusses Bayesian analysis of the variance changepoints problem in linear models with flexible error distributions. Specifically, we consider the class of scale mixtures of normal distributions, which not only exhibits symmetric heavy-tailed behavior, but also includes many common error distributions as special cases, such as the normal and Student- t distributions. Our proposed approach can reduce the influence of atypical observations and thus offer a robust technique for detecting the variance changepoints in many financial and economic data. We propose an efficient Gibbs sampling procedure to generate posterior samples and in turn to perform Bayesian inference. Simulation studies are conducted to demonstrate satisfactory performance of the proposed methodology. The closing price data set from the US stocks database is analyzed for illustrative purposes.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-017-9690-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bayesian analysis ; Behavioral/Experimental Economics ; Change detection ; Computer Appl. in Social and Behavioral Sciences ; Computer simulation ; Economic models ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Empirical analysis ; Financial theory ; Innovations ; Linear analysis ; Math Applications in Computer Science ; Mathematical models ; Mixtures ; Normality ; Operations Research/Decision Theory ; Robustness (mathematics) ; Sampling ; Simulation ; Statistical inference ; Variance analysis ; Volatility</subject><ispartof>Computational economics, 2018-08, Vol.52 (2), p.459-477</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Computational Economics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-2edebcd028de4d8627940e21205c3d88363ad7a1b120e6d3a707b7ddd975fb33</citedby><cites>FETCH-LOGICAL-c381t-2edebcd028de4d8627940e21205c3d88363ad7a1b120e6d3a707b7ddd975fb33</cites><orcidid>0000-0002-9233-7844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-017-9690-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-017-9690-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kang, Shuaimin</creatorcontrib><creatorcontrib>Liu, Guangying</creatorcontrib><creatorcontrib>Qi, Howard</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><title>Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>Normality and static variance are very common assumptions in traditional financial theories and risk modeling for mathematical convenience. Empirical evidence suggests otherwise. With the rapid growth in volatility-based financial innovations and market, it is beneficial and essential to look beyond the traditional restrictive assumptions. This paper discusses Bayesian analysis of the variance changepoints problem in linear models with flexible error distributions. Specifically, we consider the class of scale mixtures of normal distributions, which not only exhibits symmetric heavy-tailed behavior, but also includes many common error distributions as special cases, such as the normal and Student- t distributions. Our proposed approach can reduce the influence of atypical observations and thus offer a robust technique for detecting the variance changepoints in many financial and economic data. We propose an efficient Gibbs sampling procedure to generate posterior samples and in turn to perform Bayesian inference. Simulation studies are conducted to demonstrate satisfactory performance of the proposed methodology. The closing price data set from the US stocks database is analyzed for illustrative purposes.</description><subject>Bayesian analysis</subject><subject>Behavioral/Experimental Economics</subject><subject>Change detection</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Empirical analysis</subject><subject>Financial theory</subject><subject>Innovations</subject><subject>Linear analysis</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical models</subject><subject>Mixtures</subject><subject>Normality</subject><subject>Operations Research/Decision Theory</subject><subject>Robustness (mathematics)</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Statistical inference</subject><subject>Variance analysis</subject><subject>Volatility</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEURYMoWKs_wF3AdfQl85FkqbVaoeLC4sZFyExebUo7U5OpMv_elBFcubrwuOc-OIRccrjmAPImcih5zoBLpksNTB2RES-kYFrL_JiMQAvJJGh9Ss5iXANAwYUYkfc722P0tqFvNqSokU5WtvnAXeubjt5jh3Xn24b6hs59gzbQ59bhJtJv363oa7_dYhd8TWdov3q2sH6Djk5DaEM8JydLu4l48ZtjsniYLiYzNn95fJrczlmdKd4xgQ6r2oFQDnOnSiF1Dii4gKLOnFJZmVknLa_SBUuXWQmyks45LYtllWVjcjXM7kL7ucfYmXW7D036aAQoqXIodZlafGjVoY0x4NLsgt_a0BsO5qDQDApNUmgOCo1KjBiYmLrJSfhb_h_6ATP4dC8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Kang, Shuaimin</creator><creator>Liu, Guangying</creator><creator>Qi, Howard</creator><creator>Wang, Min</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9233-7844</orcidid></search><sort><creationdate>20180801</creationdate><title>Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors</title><author>Kang, Shuaimin ; Liu, Guangying ; Qi, Howard ; Wang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-2edebcd028de4d8627940e21205c3d88363ad7a1b120e6d3a707b7ddd975fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Behavioral/Experimental Economics</topic><topic>Change detection</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Empirical analysis</topic><topic>Financial theory</topic><topic>Innovations</topic><topic>Linear analysis</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical models</topic><topic>Mixtures</topic><topic>Normality</topic><topic>Operations Research/Decision Theory</topic><topic>Robustness (mathematics)</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Statistical inference</topic><topic>Variance analysis</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Shuaimin</creatorcontrib><creatorcontrib>Liu, Guangying</creatorcontrib><creatorcontrib>Qi, Howard</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Shuaimin</au><au>Liu, Guangying</au><au>Qi, Howard</au><au>Wang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>52</volume><issue>2</issue><spage>459</spage><epage>477</epage><pages>459-477</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Normality and static variance are very common assumptions in traditional financial theories and risk modeling for mathematical convenience. Empirical evidence suggests otherwise. With the rapid growth in volatility-based financial innovations and market, it is beneficial and essential to look beyond the traditional restrictive assumptions. This paper discusses Bayesian analysis of the variance changepoints problem in linear models with flexible error distributions. Specifically, we consider the class of scale mixtures of normal distributions, which not only exhibits symmetric heavy-tailed behavior, but also includes many common error distributions as special cases, such as the normal and Student- t distributions. Our proposed approach can reduce the influence of atypical observations and thus offer a robust technique for detecting the variance changepoints in many financial and economic data. We propose an efficient Gibbs sampling procedure to generate posterior samples and in turn to perform Bayesian inference. Simulation studies are conducted to demonstrate satisfactory performance of the proposed methodology. The closing price data set from the US stocks database is analyzed for illustrative purposes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-017-9690-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9233-7844</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7099
ispartof Computational economics, 2018-08, Vol.52 (2), p.459-477
issn 0927-7099
1572-9974
language eng
recordid cdi_proquest_journals_2087840696
source SpringerLink Journals - AutoHoldings
subjects Bayesian analysis
Behavioral/Experimental Economics
Change detection
Computer Appl. in Social and Behavioral Sciences
Computer simulation
Economic models
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Empirical analysis
Financial theory
Innovations
Linear analysis
Math Applications in Computer Science
Mathematical models
Mixtures
Normality
Operations Research/Decision Theory
Robustness (mathematics)
Sampling
Simulation
Statistical inference
Variance analysis
Volatility
title Bayesian Variance Changepoint Detection in Linear Models with Symmetric Heavy-Tailed Errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Variance%20Changepoint%20Detection%20in%20Linear%20Models%20with%20Symmetric%20Heavy-Tailed%20Errors&rft.jtitle=Computational%20economics&rft.au=Kang,%20Shuaimin&rft.date=2018-08-01&rft.volume=52&rft.issue=2&rft.spage=459&rft.epage=477&rft.pages=459-477&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-017-9690-8&rft_dat=%3Cproquest_cross%3E2087840696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087840696&rft_id=info:pmid/&rfr_iscdi=true