Platform Deformation Refined Pointing and Phase Correction for the AMiBA Hexapod Telescope

The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hexapod telescope. We briefly summarize the hexapod o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-10
Hauptverfasser: Koch, Patrick M, Kesteven, Michael, Yu-Yen, Chang, Yau-De, Huang, Raffin, Philippe, Ke-Yung, Chen, Chereau, Guillaume, Ming-Tang, Chen, Ho, Paul T P, Huang, Chih-Wie, Ibanez-Romano, Fabiola, Jiang, Homin, Yu-Wei, Liao, Kai-Yang, Lin, Guo-Chin, Liu, Molnar, Sandor M, Nishioka, Hiroaki, Umetsu, Keiichi, Fu-Cheng, Wang, Wu, Jiun-Huei Proty, Altamirano, Pablo, Chia-Hao, Chang, Shu-Hao, Chang, Su-Wei, Chang, Chi-Chiang, Han, Kubo, Derek, Chao-Te, Li, Martin-Cocher, Pierre, Oshiro, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Koch, Patrick M
Kesteven, Michael
Yu-Yen, Chang
Yau-De, Huang
Raffin, Philippe
Ke-Yung, Chen
Chereau, Guillaume
Ming-Tang, Chen
Ho, Paul T P
Huang, Chih-Wie
Ibanez-Romano, Fabiola
Jiang, Homin
Yu-Wei, Liao
Kai-Yang, Lin
Guo-Chin, Liu
Molnar, Sandor M
Nishioka, Hiroaki
Umetsu, Keiichi
Fu-Cheng, Wang
Wu, Jiun-Huei Proty
Altamirano, Pablo
Chia-Hao, Chang
Shu-Hao, Chang
Su-Wei, Chang
Chi-Chiang, Han
Kubo, Derek
Chao-Te, Li
Martin-Cocher, Pierre
Oshiro, Peter
description The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hexapod telescope. We briefly summarize the hexapod operation with the current pointing error model. We then focus on the upcoming 13-element expansion with its potential difficulties and solutions. Photogrammetry measurements of the platform reveal deformations at a level which can affect the optical pointing and the receiver radio phase. In order to prepare for the 13-element upgrade, two optical telescopes are installed on the platform to correlate optical pointing tests. Being mounted on different locations, the residuals of the two sets of pointing errors show a characteristic phase and amplitude difference as a function of the platform deformation pattern. These results depend on the telescope's azimuth, elevation and polarization position. An analytical model for the deformation is derived in order to separate the local deformation induced error from the real hexapod pointing error. Similarly, we demonstrate that the deformation induced radio phase error can be reliably modeled and calibrated, which allows us to recover the ideal synthesized beam in amplitude and shape of up to 90% or more. The resulting array efficiency and its limits are discussed based on the derived errors.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087812191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087812191</sourcerecordid><originalsourceid>FETCH-proquest_journals_20878121913</originalsourceid><addsrcrecordid>eNqNykELgjAYxvERBEn5HV7oLGwz045mhZcgwlMXGfqaE9tsm9DHz6IP0OnPw_ObEY-HIQuSDecL4lvbUUr5NuZRFHrkdumFa7R5wAE_EU5qBVdspMIaLloqJ9UdhJpGKyxCpo3B6qsmD65FSM9yn0KOLzHoGgrs0VZ6wBWZN6K36P-6JOvTscjyYDD6OaJ1ZadHo6ar5DSJE8bZjoX_qTflCEH6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087812191</pqid></control><display><type>article</type><title>Platform Deformation Refined Pointing and Phase Correction for the AMiBA Hexapod Telescope</title><source>Free E- Journals</source><creator>Koch, Patrick M ; Kesteven, Michael ; Yu-Yen, Chang ; Yau-De, Huang ; Raffin, Philippe ; Ke-Yung, Chen ; Chereau, Guillaume ; Ming-Tang, Chen ; Ho, Paul T P ; Huang, Chih-Wie ; Ibanez-Romano, Fabiola ; Jiang, Homin ; Yu-Wei, Liao ; Kai-Yang, Lin ; Guo-Chin, Liu ; Molnar, Sandor M ; Nishioka, Hiroaki ; Umetsu, Keiichi ; Fu-Cheng, Wang ; Wu, Jiun-Huei Proty ; Altamirano, Pablo ; Chia-Hao, Chang ; Shu-Hao, Chang ; Su-Wei, Chang ; Chi-Chiang, Han ; Kubo, Derek ; Chao-Te, Li ; Martin-Cocher, Pierre ; Oshiro, Peter</creator><creatorcontrib>Koch, Patrick M ; Kesteven, Michael ; Yu-Yen, Chang ; Yau-De, Huang ; Raffin, Philippe ; Ke-Yung, Chen ; Chereau, Guillaume ; Ming-Tang, Chen ; Ho, Paul T P ; Huang, Chih-Wie ; Ibanez-Romano, Fabiola ; Jiang, Homin ; Yu-Wei, Liao ; Kai-Yang, Lin ; Guo-Chin, Liu ; Molnar, Sandor M ; Nishioka, Hiroaki ; Umetsu, Keiichi ; Fu-Cheng, Wang ; Wu, Jiun-Huei Proty ; Altamirano, Pablo ; Chia-Hao, Chang ; Shu-Hao, Chang ; Su-Wei, Chang ; Chi-Chiang, Han ; Kubo, Derek ; Chao-Te, Li ; Martin-Cocher, Pierre ; Oshiro, Peter</creatorcontrib><description>The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hexapod telescope. We briefly summarize the hexapod operation with the current pointing error model. We then focus on the upcoming 13-element expansion with its potential difficulties and solutions. Photogrammetry measurements of the platform reveal deformations at a level which can affect the optical pointing and the receiver radio phase. In order to prepare for the 13-element upgrade, two optical telescopes are installed on the platform to correlate optical pointing tests. Being mounted on different locations, the residuals of the two sets of pointing errors show a characteristic phase and amplitude difference as a function of the platform deformation pattern. These results depend on the telescope's azimuth, elevation and polarization position. An analytical model for the deformation is derived in order to separate the local deformation induced error from the real hexapod pointing error. Similarly, we demonstrate that the deformation induced radio phase error can be reliably modeled and calibrated, which allows us to recover the ideal synthesized beam in amplitude and shape of up to 90% or more. The resulting array efficiency and its limits are discussed based on the derived errors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplitudes ; Anisotropy ; Cosmology ; Deformation ; Elevation ; Mathematical models ; Phase error ; Photogrammetry ; Radio ; Radio interferometers ; Telescopes</subject><ispartof>arXiv.org, 2009-10</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Koch, Patrick M</creatorcontrib><creatorcontrib>Kesteven, Michael</creatorcontrib><creatorcontrib>Yu-Yen, Chang</creatorcontrib><creatorcontrib>Yau-De, Huang</creatorcontrib><creatorcontrib>Raffin, Philippe</creatorcontrib><creatorcontrib>Ke-Yung, Chen</creatorcontrib><creatorcontrib>Chereau, Guillaume</creatorcontrib><creatorcontrib>Ming-Tang, Chen</creatorcontrib><creatorcontrib>Ho, Paul T P</creatorcontrib><creatorcontrib>Huang, Chih-Wie</creatorcontrib><creatorcontrib>Ibanez-Romano, Fabiola</creatorcontrib><creatorcontrib>Jiang, Homin</creatorcontrib><creatorcontrib>Yu-Wei, Liao</creatorcontrib><creatorcontrib>Kai-Yang, Lin</creatorcontrib><creatorcontrib>Guo-Chin, Liu</creatorcontrib><creatorcontrib>Molnar, Sandor M</creatorcontrib><creatorcontrib>Nishioka, Hiroaki</creatorcontrib><creatorcontrib>Umetsu, Keiichi</creatorcontrib><creatorcontrib>Fu-Cheng, Wang</creatorcontrib><creatorcontrib>Wu, Jiun-Huei Proty</creatorcontrib><creatorcontrib>Altamirano, Pablo</creatorcontrib><creatorcontrib>Chia-Hao, Chang</creatorcontrib><creatorcontrib>Shu-Hao, Chang</creatorcontrib><creatorcontrib>Su-Wei, Chang</creatorcontrib><creatorcontrib>Chi-Chiang, Han</creatorcontrib><creatorcontrib>Kubo, Derek</creatorcontrib><creatorcontrib>Chao-Te, Li</creatorcontrib><creatorcontrib>Martin-Cocher, Pierre</creatorcontrib><creatorcontrib>Oshiro, Peter</creatorcontrib><title>Platform Deformation Refined Pointing and Phase Correction for the AMiBA Hexapod Telescope</title><title>arXiv.org</title><description>The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hexapod telescope. We briefly summarize the hexapod operation with the current pointing error model. We then focus on the upcoming 13-element expansion with its potential difficulties and solutions. Photogrammetry measurements of the platform reveal deformations at a level which can affect the optical pointing and the receiver radio phase. In order to prepare for the 13-element upgrade, two optical telescopes are installed on the platform to correlate optical pointing tests. Being mounted on different locations, the residuals of the two sets of pointing errors show a characteristic phase and amplitude difference as a function of the platform deformation pattern. These results depend on the telescope's azimuth, elevation and polarization position. An analytical model for the deformation is derived in order to separate the local deformation induced error from the real hexapod pointing error. Similarly, we demonstrate that the deformation induced radio phase error can be reliably modeled and calibrated, which allows us to recover the ideal synthesized beam in amplitude and shape of up to 90% or more. The resulting array efficiency and its limits are discussed based on the derived errors.</description><subject>Amplitudes</subject><subject>Anisotropy</subject><subject>Cosmology</subject><subject>Deformation</subject><subject>Elevation</subject><subject>Mathematical models</subject><subject>Phase error</subject><subject>Photogrammetry</subject><subject>Radio</subject><subject>Radio interferometers</subject><subject>Telescopes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYxvERBEn5HV7oLGwz045mhZcgwlMXGfqaE9tsm9DHz6IP0OnPw_ObEY-HIQuSDecL4lvbUUr5NuZRFHrkdumFa7R5wAE_EU5qBVdspMIaLloqJ9UdhJpGKyxCpo3B6qsmD65FSM9yn0KOLzHoGgrs0VZ6wBWZN6K36P-6JOvTscjyYDD6OaJ1ZadHo6ar5DSJE8bZjoX_qTflCEH6</recordid><startdate>20091025</startdate><enddate>20091025</enddate><creator>Koch, Patrick M</creator><creator>Kesteven, Michael</creator><creator>Yu-Yen, Chang</creator><creator>Yau-De, Huang</creator><creator>Raffin, Philippe</creator><creator>Ke-Yung, Chen</creator><creator>Chereau, Guillaume</creator><creator>Ming-Tang, Chen</creator><creator>Ho, Paul T P</creator><creator>Huang, Chih-Wie</creator><creator>Ibanez-Romano, Fabiola</creator><creator>Jiang, Homin</creator><creator>Yu-Wei, Liao</creator><creator>Kai-Yang, Lin</creator><creator>Guo-Chin, Liu</creator><creator>Molnar, Sandor M</creator><creator>Nishioka, Hiroaki</creator><creator>Umetsu, Keiichi</creator><creator>Fu-Cheng, Wang</creator><creator>Wu, Jiun-Huei Proty</creator><creator>Altamirano, Pablo</creator><creator>Chia-Hao, Chang</creator><creator>Shu-Hao, Chang</creator><creator>Su-Wei, Chang</creator><creator>Chi-Chiang, Han</creator><creator>Kubo, Derek</creator><creator>Chao-Te, Li</creator><creator>Martin-Cocher, Pierre</creator><creator>Oshiro, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091025</creationdate><title>Platform Deformation Refined Pointing and Phase Correction for the AMiBA Hexapod Telescope</title><author>Koch, Patrick M ; Kesteven, Michael ; Yu-Yen, Chang ; Yau-De, Huang ; Raffin, Philippe ; Ke-Yung, Chen ; Chereau, Guillaume ; Ming-Tang, Chen ; Ho, Paul T P ; Huang, Chih-Wie ; Ibanez-Romano, Fabiola ; Jiang, Homin ; Yu-Wei, Liao ; Kai-Yang, Lin ; Guo-Chin, Liu ; Molnar, Sandor M ; Nishioka, Hiroaki ; Umetsu, Keiichi ; Fu-Cheng, Wang ; Wu, Jiun-Huei Proty ; Altamirano, Pablo ; Chia-Hao, Chang ; Shu-Hao, Chang ; Su-Wei, Chang ; Chi-Chiang, Han ; Kubo, Derek ; Chao-Te, Li ; Martin-Cocher, Pierre ; Oshiro, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20878121913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amplitudes</topic><topic>Anisotropy</topic><topic>Cosmology</topic><topic>Deformation</topic><topic>Elevation</topic><topic>Mathematical models</topic><topic>Phase error</topic><topic>Photogrammetry</topic><topic>Radio</topic><topic>Radio interferometers</topic><topic>Telescopes</topic><toplevel>online_resources</toplevel><creatorcontrib>Koch, Patrick M</creatorcontrib><creatorcontrib>Kesteven, Michael</creatorcontrib><creatorcontrib>Yu-Yen, Chang</creatorcontrib><creatorcontrib>Yau-De, Huang</creatorcontrib><creatorcontrib>Raffin, Philippe</creatorcontrib><creatorcontrib>Ke-Yung, Chen</creatorcontrib><creatorcontrib>Chereau, Guillaume</creatorcontrib><creatorcontrib>Ming-Tang, Chen</creatorcontrib><creatorcontrib>Ho, Paul T P</creatorcontrib><creatorcontrib>Huang, Chih-Wie</creatorcontrib><creatorcontrib>Ibanez-Romano, Fabiola</creatorcontrib><creatorcontrib>Jiang, Homin</creatorcontrib><creatorcontrib>Yu-Wei, Liao</creatorcontrib><creatorcontrib>Kai-Yang, Lin</creatorcontrib><creatorcontrib>Guo-Chin, Liu</creatorcontrib><creatorcontrib>Molnar, Sandor M</creatorcontrib><creatorcontrib>Nishioka, Hiroaki</creatorcontrib><creatorcontrib>Umetsu, Keiichi</creatorcontrib><creatorcontrib>Fu-Cheng, Wang</creatorcontrib><creatorcontrib>Wu, Jiun-Huei Proty</creatorcontrib><creatorcontrib>Altamirano, Pablo</creatorcontrib><creatorcontrib>Chia-Hao, Chang</creatorcontrib><creatorcontrib>Shu-Hao, Chang</creatorcontrib><creatorcontrib>Su-Wei, Chang</creatorcontrib><creatorcontrib>Chi-Chiang, Han</creatorcontrib><creatorcontrib>Kubo, Derek</creatorcontrib><creatorcontrib>Chao-Te, Li</creatorcontrib><creatorcontrib>Martin-Cocher, Pierre</creatorcontrib><creatorcontrib>Oshiro, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Patrick M</au><au>Kesteven, Michael</au><au>Yu-Yen, Chang</au><au>Yau-De, Huang</au><au>Raffin, Philippe</au><au>Ke-Yung, Chen</au><au>Chereau, Guillaume</au><au>Ming-Tang, Chen</au><au>Ho, Paul T P</au><au>Huang, Chih-Wie</au><au>Ibanez-Romano, Fabiola</au><au>Jiang, Homin</au><au>Yu-Wei, Liao</au><au>Kai-Yang, Lin</au><au>Guo-Chin, Liu</au><au>Molnar, Sandor M</au><au>Nishioka, Hiroaki</au><au>Umetsu, Keiichi</au><au>Fu-Cheng, Wang</au><au>Wu, Jiun-Huei Proty</au><au>Altamirano, Pablo</au><au>Chia-Hao, Chang</au><au>Shu-Hao, Chang</au><au>Su-Wei, Chang</au><au>Chi-Chiang, Han</au><au>Kubo, Derek</au><au>Chao-Te, Li</au><au>Martin-Cocher, Pierre</au><au>Oshiro, Peter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Platform Deformation Refined Pointing and Phase Correction for the AMiBA Hexapod Telescope</atitle><jtitle>arXiv.org</jtitle><date>2009-10-25</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hexapod telescope. We briefly summarize the hexapod operation with the current pointing error model. We then focus on the upcoming 13-element expansion with its potential difficulties and solutions. Photogrammetry measurements of the platform reveal deformations at a level which can affect the optical pointing and the receiver radio phase. In order to prepare for the 13-element upgrade, two optical telescopes are installed on the platform to correlate optical pointing tests. Being mounted on different locations, the residuals of the two sets of pointing errors show a characteristic phase and amplitude difference as a function of the platform deformation pattern. These results depend on the telescope's azimuth, elevation and polarization position. An analytical model for the deformation is derived in order to separate the local deformation induced error from the real hexapod pointing error. Similarly, we demonstrate that the deformation induced radio phase error can be reliably modeled and calibrated, which allows us to recover the ideal synthesized beam in amplitude and shape of up to 90% or more. The resulting array efficiency and its limits are discussed based on the derived errors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087812191
source Free E- Journals
subjects Amplitudes
Anisotropy
Cosmology
Deformation
Elevation
Mathematical models
Phase error
Photogrammetry
Radio
Radio interferometers
Telescopes
title Platform Deformation Refined Pointing and Phase Correction for the AMiBA Hexapod Telescope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Platform%20Deformation%20Refined%20Pointing%20and%20Phase%20Correction%20for%20the%20AMiBA%20Hexapod%20Telescope&rft.jtitle=arXiv.org&rft.au=Koch,%20Patrick%20M&rft.date=2009-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087812191%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087812191&rft_id=info:pmid/&rfr_iscdi=true