Effectiveness and Limitations of Statistical Spam Filters
In this paper we discuss the techniques involved in the design of the famous statistical spam filters that include Naive Bayes, Term Frequency-Inverse Document Frequency, K-Nearest Neighbor, Support Vector Machine, and Bayes Additive Regression Tree. We compare these techniques with each other in te...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Banday, M Tariq Jan, Tariq R |
description | In this paper we discuss the techniques involved in the design of the famous statistical spam filters that include Naive Bayes, Term Frequency-Inverse Document Frequency, K-Nearest Neighbor, Support Vector Machine, and Bayes Additive Regression Tree. We compare these techniques with each other in terms of accuracy, recall, precision, etc. Further, we discuss the effectiveness and limitations of statistical filters in filtering out various types of spam from legitimate e-mails. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087810777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087810777</sourcerecordid><originalsourceid>FETCH-proquest_journals_20878107773</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBcSBNr6llaPHir9xLaDaSkSc2mvl8FH-BpBmY2LBNSlkV9EmLHcqKJcy7OSlSVzNilMQaHZF_okQi0H-FuZ5t0ssETBAPd1ynZQTvoFj1Da13CSAe2NdoR5j_u2bFtHtdbscTwXJFSP4U1-k_qBa9VXXKllPzvegOcXzaq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087810777</pqid></control><display><type>article</type><title>Effectiveness and Limitations of Statistical Spam Filters</title><source>Free E- Journals</source><creator>Banday, M Tariq ; Jan, Tariq R</creator><creatorcontrib>Banday, M Tariq ; Jan, Tariq R</creatorcontrib><description>In this paper we discuss the techniques involved in the design of the famous statistical spam filters that include Naive Bayes, Term Frequency-Inverse Document Frequency, K-Nearest Neighbor, Support Vector Machine, and Bayes Additive Regression Tree. We compare these techniques with each other in terms of accuracy, recall, precision, etc. Further, we discuss the effectiveness and limitations of statistical filters in filtering out various types of spam from legitimate e-mails.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Regression analysis ; Spamming ; Statistical analysis ; Support vector machines</subject><ispartof>arXiv.org, 2009-10</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Banday, M Tariq</creatorcontrib><creatorcontrib>Jan, Tariq R</creatorcontrib><title>Effectiveness and Limitations of Statistical Spam Filters</title><title>arXiv.org</title><description>In this paper we discuss the techniques involved in the design of the famous statistical spam filters that include Naive Bayes, Term Frequency-Inverse Document Frequency, K-Nearest Neighbor, Support Vector Machine, and Bayes Additive Regression Tree. We compare these techniques with each other in terms of accuracy, recall, precision, etc. Further, we discuss the effectiveness and limitations of statistical filters in filtering out various types of spam from legitimate e-mails.</description><subject>Bayesian analysis</subject><subject>Regression analysis</subject><subject>Spamming</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBcSBNr6llaPHir9xLaDaSkSc2mvl8FH-BpBmY2LBNSlkV9EmLHcqKJcy7OSlSVzNilMQaHZF_okQi0H-FuZ5t0ssETBAPd1ynZQTvoFj1Da13CSAe2NdoR5j_u2bFtHtdbscTwXJFSP4U1-k_qBa9VXXKllPzvegOcXzaq</recordid><startdate>20091014</startdate><enddate>20091014</enddate><creator>Banday, M Tariq</creator><creator>Jan, Tariq R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091014</creationdate><title>Effectiveness and Limitations of Statistical Spam Filters</title><author>Banday, M Tariq ; Jan, Tariq R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20878107773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bayesian analysis</topic><topic>Regression analysis</topic><topic>Spamming</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Banday, M Tariq</creatorcontrib><creatorcontrib>Jan, Tariq R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banday, M Tariq</au><au>Jan, Tariq R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Effectiveness and Limitations of Statistical Spam Filters</atitle><jtitle>arXiv.org</jtitle><date>2009-10-14</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>In this paper we discuss the techniques involved in the design of the famous statistical spam filters that include Naive Bayes, Term Frequency-Inverse Document Frequency, K-Nearest Neighbor, Support Vector Machine, and Bayes Additive Regression Tree. We compare these techniques with each other in terms of accuracy, recall, precision, etc. Further, we discuss the effectiveness and limitations of statistical filters in filtering out various types of spam from legitimate e-mails.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2009-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087810777 |
source | Free E- Journals |
subjects | Bayesian analysis Regression analysis Spamming Statistical analysis Support vector machines |
title | Effectiveness and Limitations of Statistical Spam Filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Effectiveness%20and%20Limitations%20of%20Statistical%20Spam%20Filters&rft.jtitle=arXiv.org&rft.au=Banday,%20M%20Tariq&rft.date=2009-10-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087810777%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087810777&rft_id=info:pmid/&rfr_iscdi=true |