On the maximum number of edges of non-flowerable coin graphs

For \(n\in\nats\) and \(3\leq k\leq n\) we compute the exact value of \(E_k(n)\), the maximum number of edges of a simple planar graph on \(n\) vertices where each vertex bounds an \(\ell\)-gon where \(\ell\geq k\). The lower bound of \(E_k(n)\) is obtained by explicit construction, and the matching...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-09
Hauptverfasser: Agnarsson, Geir, Jill Bigley Dunham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Agnarsson, Geir
Jill Bigley Dunham
description For \(n\in\nats\) and \(3\leq k\leq n\) we compute the exact value of \(E_k(n)\), the maximum number of edges of a simple planar graph on \(n\) vertices where each vertex bounds an \(\ell\)-gon where \(\ell\geq k\). The lower bound of \(E_k(n)\) is obtained by explicit construction, and the matching upper bound is obtained by using Integer Programming (IP.) We then use this result to conjecture the maximum number of edges of a non-flowerable coin graph on \(n\) vertices. A {\em flower} is a coin graph representation of the wheel graph. A collection of coins or discs in the Euclidean plane is {\em non-flowerable} if no flower can be formed by coins from the collection.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087790160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087790160</sourcerecordid><originalsourceid>FETCH-proquest_journals_20877901603</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCa2qeBOFHdu3Je0vvRDPjVp0OOr4AFczcDMgiSM8zyrdoytSBrCSCllpWBFwRNyuFqYewQjX4OJBmw0DXpwCvDeYfiKdTZT2j3Ry0YjtG6w0Hk59WFDlkrqgOmPa7I9n27HSzZ594gY5np00dtPqhmthNjTvKT8v-sNCEg3MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087790160</pqid></control><display><type>article</type><title>On the maximum number of edges of non-flowerable coin graphs</title><source>Free E- Journals</source><creator>Agnarsson, Geir ; Jill Bigley Dunham</creator><creatorcontrib>Agnarsson, Geir ; Jill Bigley Dunham</creatorcontrib><description>For \(n\in\nats\) and \(3\leq k\leq n\) we compute the exact value of \(E_k(n)\), the maximum number of edges of a simple planar graph on \(n\) vertices where each vertex bounds an \(\ell\)-gon where \(\ell\geq k\). The lower bound of \(E_k(n)\) is obtained by explicit construction, and the matching upper bound is obtained by using Integer Programming (IP.) We then use this result to conjecture the maximum number of edges of a non-flowerable coin graph on \(n\) vertices. A {\em flower} is a coin graph representation of the wheel graph. A collection of coins or discs in the Euclidean plane is {\em non-flowerable} if no flower can be formed by coins from the collection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Coins ; Collection ; Euclidean geometry ; Graph representations ; Graph theory ; Graphical representations ; Integer programming ; Lower bounds ; Upper bounds</subject><ispartof>arXiv.org, 2009-09</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Agnarsson, Geir</creatorcontrib><creatorcontrib>Jill Bigley Dunham</creatorcontrib><title>On the maximum number of edges of non-flowerable coin graphs</title><title>arXiv.org</title><description>For \(n\in\nats\) and \(3\leq k\leq n\) we compute the exact value of \(E_k(n)\), the maximum number of edges of a simple planar graph on \(n\) vertices where each vertex bounds an \(\ell\)-gon where \(\ell\geq k\). The lower bound of \(E_k(n)\) is obtained by explicit construction, and the matching upper bound is obtained by using Integer Programming (IP.) We then use this result to conjecture the maximum number of edges of a non-flowerable coin graph on \(n\) vertices. A {\em flower} is a coin graph representation of the wheel graph. A collection of coins or discs in the Euclidean plane is {\em non-flowerable} if no flower can be formed by coins from the collection.</description><subject>Apexes</subject><subject>Coins</subject><subject>Collection</subject><subject>Euclidean geometry</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Integer programming</subject><subject>Lower bounds</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCa2qeBOFHdu3Je0vvRDPjVp0OOr4AFczcDMgiSM8zyrdoytSBrCSCllpWBFwRNyuFqYewQjX4OJBmw0DXpwCvDeYfiKdTZT2j3Ry0YjtG6w0Hk59WFDlkrqgOmPa7I9n27HSzZ594gY5np00dtPqhmthNjTvKT8v-sNCEg3MQ</recordid><startdate>20090923</startdate><enddate>20090923</enddate><creator>Agnarsson, Geir</creator><creator>Jill Bigley Dunham</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090923</creationdate><title>On the maximum number of edges of non-flowerable coin graphs</title><author>Agnarsson, Geir ; Jill Bigley Dunham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20877901603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Apexes</topic><topic>Coins</topic><topic>Collection</topic><topic>Euclidean geometry</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Integer programming</topic><topic>Lower bounds</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Agnarsson, Geir</creatorcontrib><creatorcontrib>Jill Bigley Dunham</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agnarsson, Geir</au><au>Jill Bigley Dunham</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the maximum number of edges of non-flowerable coin graphs</atitle><jtitle>arXiv.org</jtitle><date>2009-09-23</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>For \(n\in\nats\) and \(3\leq k\leq n\) we compute the exact value of \(E_k(n)\), the maximum number of edges of a simple planar graph on \(n\) vertices where each vertex bounds an \(\ell\)-gon where \(\ell\geq k\). The lower bound of \(E_k(n)\) is obtained by explicit construction, and the matching upper bound is obtained by using Integer Programming (IP.) We then use this result to conjecture the maximum number of edges of a non-flowerable coin graph on \(n\) vertices. A {\em flower} is a coin graph representation of the wheel graph. A collection of coins or discs in the Euclidean plane is {\em non-flowerable} if no flower can be formed by coins from the collection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087790160
source Free E- Journals
subjects Apexes
Coins
Collection
Euclidean geometry
Graph representations
Graph theory
Graphical representations
Integer programming
Lower bounds
Upper bounds
title On the maximum number of edges of non-flowerable coin graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20maximum%20number%20of%20edges%20of%20non-flowerable%20coin%20graphs&rft.jtitle=arXiv.org&rft.au=Agnarsson,%20Geir&rft.date=2009-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087790160%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087790160&rft_id=info:pmid/&rfr_iscdi=true