On hom-algebras with surjective twisting
A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gohr, Aron |
description | A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional conditions on the multiplication, the binary operation is a twisted version of an associative operation. As an application, an earlier result by Yael Fregier and the author on weakly unital hom-algebras is recovered with a different proof. In the second section, consequences for the deformation theory of hom-algebras with surjective twisting map are discussed. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087770641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087770641</sourcerecordid><originalsourceid>FETCH-proquest_journals_20877706413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8M9TyMjP1U3MSU9NKkosVijPLMlQKC4tykpNLsksS1UoKc8sLsnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtzc3MDMxNDY-JUAQC93zBp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087770641</pqid></control><display><type>article</type><title>On hom-algebras with surjective twisting</title><source>Free E- Journals</source><creator>Gohr, Aron</creator><creatorcontrib>Gohr, Aron</creatorcontrib><description>A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional conditions on the multiplication, the binary operation is a twisted version of an associative operation. As an application, an earlier result by Yael Fregier and the author on weakly unital hom-algebras is recovered with a different proof. In the second section, consequences for the deformation theory of hom-algebras with surjective twisting map are discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Associativity ; Binary stars ; Deformation ; Multiplication ; Twisting</subject><ispartof>arXiv.org, 2009-07</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gohr, Aron</creatorcontrib><title>On hom-algebras with surjective twisting</title><title>arXiv.org</title><description>A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional conditions on the multiplication, the binary operation is a twisted version of an associative operation. As an application, an earlier result by Yael Fregier and the author on weakly unital hom-algebras is recovered with a different proof. In the second section, consequences for the deformation theory of hom-algebras with surjective twisting map are discussed.</description><subject>Algebra</subject><subject>Associativity</subject><subject>Binary stars</subject><subject>Deformation</subject><subject>Multiplication</subject><subject>Twisting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8M9TyMjP1U3MSU9NKkosVijPLMlQKC4tykpNLsksS1UoKc8sLsnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtzc3MDMxNDY-JUAQC93zBp</recordid><startdate>20090721</startdate><enddate>20090721</enddate><creator>Gohr, Aron</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090721</creationdate><title>On hom-algebras with surjective twisting</title><author>Gohr, Aron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20877706413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Associativity</topic><topic>Binary stars</topic><topic>Deformation</topic><topic>Multiplication</topic><topic>Twisting</topic><toplevel>online_resources</toplevel><creatorcontrib>Gohr, Aron</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gohr, Aron</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On hom-algebras with surjective twisting</atitle><jtitle>arXiv.org</jtitle><date>2009-07-21</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional conditions on the multiplication, the binary operation is a twisted version of an associative operation. As an application, an earlier result by Yael Fregier and the author on weakly unital hom-algebras is recovered with a different proof. In the second section, consequences for the deformation theory of hom-algebras with surjective twisting map are discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2009-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087770641 |
source | Free E- Journals |
subjects | Algebra Associativity Binary stars Deformation Multiplication Twisting |
title | On hom-algebras with surjective twisting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20hom-algebras%20with%20surjective%20twisting&rft.jtitle=arXiv.org&rft.au=Gohr,%20Aron&rft.date=2009-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087770641%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087770641&rft_id=info:pmid/&rfr_iscdi=true |