On hom-algebras with surjective twisting

A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-07
1. Verfasser: Gohr, Aron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gohr, Aron
description A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional conditions on the multiplication, the binary operation is a twisted version of an associative operation. As an application, an earlier result by Yael Fregier and the author on weakly unital hom-algebras is recovered with a different proof. In the second section, consequences for the deformation theory of hom-algebras with surjective twisting map are discussed.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087770641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087770641</sourcerecordid><originalsourceid>FETCH-proquest_journals_20877706413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8M9TyMjP1U3MSU9NKkosVijPLMlQKC4tykpNLsksS1UoKc8sLsnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtzc3MDMxNDY-JUAQC93zBp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087770641</pqid></control><display><type>article</type><title>On hom-algebras with surjective twisting</title><source>Free E- Journals</source><creator>Gohr, Aron</creator><creatorcontrib>Gohr, Aron</creatorcontrib><description>A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional conditions on the multiplication, the binary operation is a twisted version of an associative operation. As an application, an earlier result by Yael Fregier and the author on weakly unital hom-algebras is recovered with a different proof. In the second section, consequences for the deformation theory of hom-algebras with surjective twisting map are discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Associativity ; Binary stars ; Deformation ; Multiplication ; Twisting</subject><ispartof>arXiv.org, 2009-07</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gohr, Aron</creatorcontrib><title>On hom-algebras with surjective twisting</title><title>arXiv.org</title><description>A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional conditions on the multiplication, the binary operation is a twisted version of an associative operation. As an application, an earlier result by Yael Fregier and the author on weakly unital hom-algebras is recovered with a different proof. In the second section, consequences for the deformation theory of hom-algebras with surjective twisting map are discussed.</description><subject>Algebra</subject><subject>Associativity</subject><subject>Binary stars</subject><subject>Deformation</subject><subject>Multiplication</subject><subject>Twisting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8M9TyMjP1U3MSU9NKkosVijPLMlQKC4tykpNLsksS1UoKc8sLsnMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtzc3MDMxNDY-JUAQC93zBp</recordid><startdate>20090721</startdate><enddate>20090721</enddate><creator>Gohr, Aron</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090721</creationdate><title>On hom-algebras with surjective twisting</title><author>Gohr, Aron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20877706413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Associativity</topic><topic>Binary stars</topic><topic>Deformation</topic><topic>Multiplication</topic><topic>Twisting</topic><toplevel>online_resources</toplevel><creatorcontrib>Gohr, Aron</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gohr, Aron</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On hom-algebras with surjective twisting</atitle><jtitle>arXiv.org</jtitle><date>2009-07-21</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>A hom-associative structure is a set \(A\) together with a binary operation \(\star\) and a selfmap \(\alpha\) such that an \(\alpha\)-twisted version of associativity is fulfilled. In this paper, we assume that \(\alpha\) is surjective. We show that in this case, under surprisingly weak additional conditions on the multiplication, the binary operation is a twisted version of an associative operation. As an application, an earlier result by Yael Fregier and the author on weakly unital hom-algebras is recovered with a different proof. In the second section, consequences for the deformation theory of hom-algebras with surjective twisting map are discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087770641
source Free E- Journals
subjects Algebra
Associativity
Binary stars
Deformation
Multiplication
Twisting
title On hom-algebras with surjective twisting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20hom-algebras%20with%20surjective%20twisting&rft.jtitle=arXiv.org&rft.au=Gohr,%20Aron&rft.date=2009-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087770641%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087770641&rft_id=info:pmid/&rfr_iscdi=true