Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things
In the research of location privacy protection, the existing methods are mostly based on the traditional anonymization, fuzzy and cryptography technology, and little success in the big data environment, for example, the sensor networks contain sensitive information, which is compulsory to be appropr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2018-08, Vol.14 (8), p.3628-3636 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3636 |
---|---|
container_issue | 8 |
container_start_page | 3628 |
container_title | IEEE transactions on industrial informatics |
container_volume | 14 |
creator | Yin, Chunyong Xi, Jinwen Sun, Ruxia Wang, Jin |
description | In the research of location privacy protection, the existing methods are mostly based on the traditional anonymization, fuzzy and cryptography technology, and little success in the big data environment, for example, the sensor networks contain sensitive information, which is compulsory to be appropriately protected. Current trends, such as "Industrie 4.0" and Internet of Things (IoT), generate, process, and exchange vast amounts of security-critical and privacy-sensitive data, which makes them attractive targets of attacks. However, previous methods overlooked the privacy protection issue, leading to privacy violation. In this paper, we propose a location privacy protection method that satisfies differential privacy constraint to protect location data privacy and maximizes the utility of data and algorithm in Industrial IoT. In view of the high value and low density of location data, we combine the utility with the privacy and build a multilevel location information tree model. Furthermore, the index mechanism of differential privacy is used to select data according to the tree node accessing frequency. Finally, the Laplace scheme is used to add noises to accessing frequency of the selecting data. As is shown in the theoretical analysis and the experimental results, the proposed strategy can achieve significant improvements in terms of security, privacy, and applicability. |
doi_str_mv | 10.1109/TII.2017.2773646 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2087766042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8110700</ieee_id><sourcerecordid>2087766042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9cf9dd8659d12a85ddf626313ae86e9c07a574fcf8ad64cd14076af27ced6e9d3</originalsourceid><addsrcrecordid>eNo9kMtLAzEQh4MoWKt3wUvA89Y8dpPN0fpcKChYzyHkUVNqUpNU6H9vaktP82Pmmxn4ALjGaIIxEnfzYZgQhPmEcE5Zy07ACIsWNwh16LTmrsMNJYieg4uclwhRjqgYgfUsalV8DPA9-V-lt7XGYvV_a6qyNbCGR--cTTYUr1ZH8KMkVexiC11McOoX8FEVBX2AQzCbXNKOHUKxKdgCo4PzLx8W-RKcObXK9upQx-Dz-Wn-8NrM3l6Gh_tZo4nApRHaCWN61gmDieo7YxwjjGKqbM-s0IirjrdOu14Z1mqDW8SZcoRra-rc0DG43d9dp_izsbnIZdykUF9KgnrOGUMtqRTaUzrFnJN1cp38t0pbiZHceZXVq9x5lQevdeVmv-KttUe8rzCvVv8ApF51Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087766042</pqid></control><display><type>article</type><title>Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Wang, Jin</creator><creatorcontrib>Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Wang, Jin</creatorcontrib><description>In the research of location privacy protection, the existing methods are mostly based on the traditional anonymization, fuzzy and cryptography technology, and little success in the big data environment, for example, the sensor networks contain sensitive information, which is compulsory to be appropriately protected. Current trends, such as "Industrie 4.0" and Internet of Things (IoT), generate, process, and exchange vast amounts of security-critical and privacy-sensitive data, which makes them attractive targets of attacks. However, previous methods overlooked the privacy protection issue, leading to privacy violation. In this paper, we propose a location privacy protection method that satisfies differential privacy constraint to protect location data privacy and maximizes the utility of data and algorithm in Industrial IoT. In view of the high value and low density of location data, we combine the utility with the privacy and build a multilevel location information tree model. Furthermore, the index mechanism of differential privacy is used to select data according to the tree node accessing frequency. Finally, the Laplace scheme is used to add noises to accessing frequency of the selecting data. As is shown in the theoretical analysis and the experimental results, the proposed strategy can achieve significant improvements in terms of security, privacy, and applicability.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2773646</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Big Data ; Cryptography ; Cybersecurity ; Data management ; Data models ; Data privacy ; Differential privacy ; Industrial applications ; Internet of Things ; Internet of Things (IoT) ; location privacy protection ; location privacy tree (LPT) ; Privacy ; Sensitivity</subject><ispartof>IEEE transactions on industrial informatics, 2018-08, Vol.14 (8), p.3628-3636</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9cf9dd8659d12a85ddf626313ae86e9c07a574fcf8ad64cd14076af27ced6e9d3</citedby><cites>FETCH-LOGICAL-c291t-9cf9dd8659d12a85ddf626313ae86e9c07a574fcf8ad64cd14076af27ced6e9d3</cites><orcidid>0000-0003-3340-0695 ; 0000-0002-0397-3241 ; 0000-0001-8892-4424 ; 0000-0001-5764-2432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8110700$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8110700$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yin, Chunyong</creatorcontrib><creatorcontrib>Xi, Jinwen</creatorcontrib><creatorcontrib>Sun, Ruxia</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><title>Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In the research of location privacy protection, the existing methods are mostly based on the traditional anonymization, fuzzy and cryptography technology, and little success in the big data environment, for example, the sensor networks contain sensitive information, which is compulsory to be appropriately protected. Current trends, such as "Industrie 4.0" and Internet of Things (IoT), generate, process, and exchange vast amounts of security-critical and privacy-sensitive data, which makes them attractive targets of attacks. However, previous methods overlooked the privacy protection issue, leading to privacy violation. In this paper, we propose a location privacy protection method that satisfies differential privacy constraint to protect location data privacy and maximizes the utility of data and algorithm in Industrial IoT. In view of the high value and low density of location data, we combine the utility with the privacy and build a multilevel location information tree model. Furthermore, the index mechanism of differential privacy is used to select data according to the tree node accessing frequency. Finally, the Laplace scheme is used to add noises to accessing frequency of the selecting data. As is shown in the theoretical analysis and the experimental results, the proposed strategy can achieve significant improvements in terms of security, privacy, and applicability.</description><subject>Big Data</subject><subject>Cryptography</subject><subject>Cybersecurity</subject><subject>Data management</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Differential privacy</subject><subject>Industrial applications</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>location privacy protection</subject><subject>location privacy tree (LPT)</subject><subject>Privacy</subject><subject>Sensitivity</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLAzEQh4MoWKt3wUvA89Y8dpPN0fpcKChYzyHkUVNqUpNU6H9vaktP82Pmmxn4ALjGaIIxEnfzYZgQhPmEcE5Zy07ACIsWNwh16LTmrsMNJYieg4uclwhRjqgYgfUsalV8DPA9-V-lt7XGYvV_a6qyNbCGR--cTTYUr1ZH8KMkVexiC11McOoX8FEVBX2AQzCbXNKOHUKxKdgCo4PzLx8W-RKcObXK9upQx-Dz-Wn-8NrM3l6Gh_tZo4nApRHaCWN61gmDieo7YxwjjGKqbM-s0IirjrdOu14Z1mqDW8SZcoRra-rc0DG43d9dp_izsbnIZdykUF9KgnrOGUMtqRTaUzrFnJN1cp38t0pbiZHceZXVq9x5lQevdeVmv-KttUe8rzCvVv8ApF51Dw</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Yin, Chunyong</creator><creator>Xi, Jinwen</creator><creator>Sun, Ruxia</creator><creator>Wang, Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3340-0695</orcidid><orcidid>https://orcid.org/0000-0002-0397-3241</orcidid><orcidid>https://orcid.org/0000-0001-8892-4424</orcidid><orcidid>https://orcid.org/0000-0001-5764-2432</orcidid></search><sort><creationdate>20180801</creationdate><title>Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things</title><author>Yin, Chunyong ; Xi, Jinwen ; Sun, Ruxia ; Wang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9cf9dd8659d12a85ddf626313ae86e9c07a574fcf8ad64cd14076af27ced6e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Big Data</topic><topic>Cryptography</topic><topic>Cybersecurity</topic><topic>Data management</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Differential privacy</topic><topic>Industrial applications</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>location privacy protection</topic><topic>location privacy tree (LPT)</topic><topic>Privacy</topic><topic>Sensitivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Yin, Chunyong</creatorcontrib><creatorcontrib>Xi, Jinwen</creatorcontrib><creatorcontrib>Sun, Ruxia</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Chunyong</au><au>Xi, Jinwen</au><au>Sun, Ruxia</au><au>Wang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>14</volume><issue>8</issue><spage>3628</spage><epage>3636</epage><pages>3628-3636</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In the research of location privacy protection, the existing methods are mostly based on the traditional anonymization, fuzzy and cryptography technology, and little success in the big data environment, for example, the sensor networks contain sensitive information, which is compulsory to be appropriately protected. Current trends, such as "Industrie 4.0" and Internet of Things (IoT), generate, process, and exchange vast amounts of security-critical and privacy-sensitive data, which makes them attractive targets of attacks. However, previous methods overlooked the privacy protection issue, leading to privacy violation. In this paper, we propose a location privacy protection method that satisfies differential privacy constraint to protect location data privacy and maximizes the utility of data and algorithm in Industrial IoT. In view of the high value and low density of location data, we combine the utility with the privacy and build a multilevel location information tree model. Furthermore, the index mechanism of differential privacy is used to select data according to the tree node accessing frequency. Finally, the Laplace scheme is used to add noises to accessing frequency of the selecting data. As is shown in the theoretical analysis and the experimental results, the proposed strategy can achieve significant improvements in terms of security, privacy, and applicability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2773646</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3340-0695</orcidid><orcidid>https://orcid.org/0000-0002-0397-3241</orcidid><orcidid>https://orcid.org/0000-0001-8892-4424</orcidid><orcidid>https://orcid.org/0000-0001-5764-2432</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2018-08, Vol.14 (8), p.3628-3636 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2087766042 |
source | IEEE Electronic Library (IEL) |
subjects | Big Data Cryptography Cybersecurity Data management Data models Data privacy Differential privacy Industrial applications Internet of Things Internet of Things (IoT) location privacy protection location privacy tree (LPT) Privacy Sensitivity |
title | Location Privacy Protection Based on Differential Privacy Strategy for Big Data in Industrial Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20Privacy%20Protection%20Based%20on%20Differential%20Privacy%20Strategy%20for%20Big%20Data%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Yin,%20Chunyong&rft.date=2018-08-01&rft.volume=14&rft.issue=8&rft.spage=3628&rft.epage=3636&rft.pages=3628-3636&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2773646&rft_dat=%3Cproquest_RIE%3E2087766042%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087766042&rft_id=info:pmid/&rft_ieee_id=8110700&rfr_iscdi=true |