On unitality conditions for Hom-associative algebras

In hom-associative structures, the associativity condition \((xy)z=x(yz)\) is twisted to \(\alpha(x)(yz) = (xy)\alpha(z)\), with \(\alpha\) a map in the appropriate category. In the present paper, we consider two different unitality conditions for hom-associative algebras. The first one, existence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-07
Hauptverfasser: Fregier, Yael, Gohr, Aron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fregier, Yael
Gohr, Aron
description In hom-associative structures, the associativity condition \((xy)z=x(yz)\) is twisted to \(\alpha(x)(yz) = (xy)\alpha(z)\), with \(\alpha\) a map in the appropriate category. In the present paper, we consider two different unitality conditions for hom-associative algebras. The first one, existence of a unit in the classical sense, is stronger than the second one, which we call weak unitality. We show associativity conditions connected to the size of the image of the twisting map for unital hom-associative algebras. Also the problem of embedding arbitrary hom-associative algebras into unital or weakly unital ones is investigated. Finally, we show that weakly unital hom-associative algebras with bijective twisting map are twisted versions of associative algebras.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087656561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087656561</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876565613</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_EHAOpC9N212Ubi7uJdZUUmKe5iWCf28HP0BuuOFuxQpQqhJdDbBhJdEspYSmBa1Vwepz4Dm4ZLxLHz5iuLnkMBCfMPIeH8IQ4ehMcm_Ljb_bazS0Y-vJeLLlz1u2Px0vh148I76ypTTMmGNY0gCyaxu9UKn_ri-CjTUD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087656561</pqid></control><display><type>article</type><title>On unitality conditions for Hom-associative algebras</title><source>Free E- Journals</source><creator>Fregier, Yael ; Gohr, Aron</creator><creatorcontrib>Fregier, Yael ; Gohr, Aron</creatorcontrib><description>In hom-associative structures, the associativity condition \((xy)z=x(yz)\) is twisted to \(\alpha(x)(yz) = (xy)\alpha(z)\), with \(\alpha\) a map in the appropriate category. In the present paper, we consider two different unitality conditions for hom-associative algebras. The first one, existence of a unit in the classical sense, is stronger than the second one, which we call weak unitality. We show associativity conditions connected to the size of the image of the twisting map for unital hom-associative algebras. Also the problem of embedding arbitrary hom-associative algebras into unital or weakly unital ones is investigated. Finally, we show that weakly unital hom-associative algebras with bijective twisting map are twisted versions of associative algebras.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Associativity ; Twisting</subject><ispartof>arXiv.org, 2009-07</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fregier, Yael</creatorcontrib><creatorcontrib>Gohr, Aron</creatorcontrib><title>On unitality conditions for Hom-associative algebras</title><title>arXiv.org</title><description>In hom-associative structures, the associativity condition \((xy)z=x(yz)\) is twisted to \(\alpha(x)(yz) = (xy)\alpha(z)\), with \(\alpha\) a map in the appropriate category. In the present paper, we consider two different unitality conditions for hom-associative algebras. The first one, existence of a unit in the classical sense, is stronger than the second one, which we call weak unitality. We show associativity conditions connected to the size of the image of the twisting map for unital hom-associative algebras. Also the problem of embedding arbitrary hom-associative algebras into unital or weakly unital ones is investigated. Finally, we show that weakly unital hom-associative algebras with bijective twisting map are twisted versions of associative algebras.</description><subject>Algebra</subject><subject>Associativity</subject><subject>Twisting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLT_EHAOpC9N212Ubi7uJdZUUmKe5iWCf28HP0BuuOFuxQpQqhJdDbBhJdEspYSmBa1Vwepz4Dm4ZLxLHz5iuLnkMBCfMPIeH8IQ4ehMcm_Ljb_bazS0Y-vJeLLlz1u2Px0vh148I76ypTTMmGNY0gCyaxu9UKn_ri-CjTUD</recordid><startdate>20090721</startdate><enddate>20090721</enddate><creator>Fregier, Yael</creator><creator>Gohr, Aron</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090721</creationdate><title>On unitality conditions for Hom-associative algebras</title><author>Fregier, Yael ; Gohr, Aron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876565613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Associativity</topic><topic>Twisting</topic><toplevel>online_resources</toplevel><creatorcontrib>Fregier, Yael</creatorcontrib><creatorcontrib>Gohr, Aron</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fregier, Yael</au><au>Gohr, Aron</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On unitality conditions for Hom-associative algebras</atitle><jtitle>arXiv.org</jtitle><date>2009-07-21</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>In hom-associative structures, the associativity condition \((xy)z=x(yz)\) is twisted to \(\alpha(x)(yz) = (xy)\alpha(z)\), with \(\alpha\) a map in the appropriate category. In the present paper, we consider two different unitality conditions for hom-associative algebras. The first one, existence of a unit in the classical sense, is stronger than the second one, which we call weak unitality. We show associativity conditions connected to the size of the image of the twisting map for unital hom-associative algebras. Also the problem of embedding arbitrary hom-associative algebras into unital or weakly unital ones is investigated. Finally, we show that weakly unital hom-associative algebras with bijective twisting map are twisted versions of associative algebras.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087656561
source Free E- Journals
subjects Algebra
Associativity
Twisting
title On unitality conditions for Hom-associative algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20unitality%20conditions%20for%20Hom-associative%20algebras&rft.jtitle=arXiv.org&rft.au=Fregier,%20Yael&rft.date=2009-07-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087656561%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087656561&rft_id=info:pmid/&rfr_iscdi=true