Low-variance Monte Carlo Solutions of the Boltzmann Transport Equation
We present and discuss a variance-reduced stochastic particle method for simulating the relaxation-time model of the Boltzmann transport equation. The present paper focuses on the dilute gas case, although the method is expected to directly extend to all fields (carriers) for which the relaxation-ti...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hadjiconstantinou, Nicolas G Radtke, Gregg A Baker, Lowell L |
description | We present and discuss a variance-reduced stochastic particle method for simulating the relaxation-time model of the Boltzmann transport equation. The present paper focuses on the dilute gas case, although the method is expected to directly extend to all fields (carriers) for which the relaxation-time approximation is reasonable. The variance reduction, achieved by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage compared to traditional stochastic particle methods in the limit of small deviation from equilibrium. More specifically, the proposed method can efficiently simulate arbitrarily small deviations from equilibrium at a computational cost that is independent of the deviation from equilibrium, which is in sharp contrast to traditional particle methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087646812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087646812</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876468123</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLqRJb7OlxUEnu5eDpNgSc9pcFHx6FXwAp3_4vxWLhJRpUmVCbFjs3MQ5F0Up8lxGrD3RM3mgHdFcFZzJeAU1Wk1wIR38SMYBDeBvCg6k_euOxkBn0biZrIdmCfhFO7YeUDsV_7pl-7bp6mMyW1qCcr6fKFjzWb3gVVlkRZUK-Z96A8KzO20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087646812</pqid></control><display><type>article</type><title>Low-variance Monte Carlo Solutions of the Boltzmann Transport Equation</title><source>Freely Accessible Journals</source><creator>Hadjiconstantinou, Nicolas G ; Radtke, Gregg A ; Baker, Lowell L</creator><creatorcontrib>Hadjiconstantinou, Nicolas G ; Radtke, Gregg A ; Baker, Lowell L</creatorcontrib><description>We present and discuss a variance-reduced stochastic particle method for simulating the relaxation-time model of the Boltzmann transport equation. The present paper focuses on the dilute gas case, although the method is expected to directly extend to all fields (carriers) for which the relaxation-time approximation is reasonable. The variance reduction, achieved by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage compared to traditional stochastic particle methods in the limit of small deviation from equilibrium. More specifically, the proposed method can efficiently simulate arbitrarily small deviations from equilibrium at a computational cost that is independent of the deviation from equilibrium, which is in sharp contrast to traditional particle methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boltzmann transport equation ; Computational efficiency ; Computer simulation ; Computing time ; Deviation ; Equilibrium ; Monte Carlo simulation ; Particle methods (mathematics) ; Transport equations ; Variance</subject><ispartof>arXiv.org, 2009-05</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Hadjiconstantinou, Nicolas G</creatorcontrib><creatorcontrib>Radtke, Gregg A</creatorcontrib><creatorcontrib>Baker, Lowell L</creatorcontrib><title>Low-variance Monte Carlo Solutions of the Boltzmann Transport Equation</title><title>arXiv.org</title><description>We present and discuss a variance-reduced stochastic particle method for simulating the relaxation-time model of the Boltzmann transport equation. The present paper focuses on the dilute gas case, although the method is expected to directly extend to all fields (carriers) for which the relaxation-time approximation is reasonable. The variance reduction, achieved by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage compared to traditional stochastic particle methods in the limit of small deviation from equilibrium. More specifically, the proposed method can efficiently simulate arbitrarily small deviations from equilibrium at a computational cost that is independent of the deviation from equilibrium, which is in sharp contrast to traditional particle methods.</description><subject>Boltzmann transport equation</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Deviation</subject><subject>Equilibrium</subject><subject>Monte Carlo simulation</subject><subject>Particle methods (mathematics)</subject><subject>Transport equations</subject><subject>Variance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLqRJb7OlxUEnu5eDpNgSc9pcFHx6FXwAp3_4vxWLhJRpUmVCbFjs3MQ5F0Up8lxGrD3RM3mgHdFcFZzJeAU1Wk1wIR38SMYBDeBvCg6k_euOxkBn0biZrIdmCfhFO7YeUDsV_7pl-7bp6mMyW1qCcr6fKFjzWb3gVVlkRZUK-Z96A8KzO20</recordid><startdate>20090513</startdate><enddate>20090513</enddate><creator>Hadjiconstantinou, Nicolas G</creator><creator>Radtke, Gregg A</creator><creator>Baker, Lowell L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090513</creationdate><title>Low-variance Monte Carlo Solutions of the Boltzmann Transport Equation</title><author>Hadjiconstantinou, Nicolas G ; Radtke, Gregg A ; Baker, Lowell L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876468123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Boltzmann transport equation</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Deviation</topic><topic>Equilibrium</topic><topic>Monte Carlo simulation</topic><topic>Particle methods (mathematics)</topic><topic>Transport equations</topic><topic>Variance</topic><toplevel>online_resources</toplevel><creatorcontrib>Hadjiconstantinou, Nicolas G</creatorcontrib><creatorcontrib>Radtke, Gregg A</creatorcontrib><creatorcontrib>Baker, Lowell L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadjiconstantinou, Nicolas G</au><au>Radtke, Gregg A</au><au>Baker, Lowell L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Low-variance Monte Carlo Solutions of the Boltzmann Transport Equation</atitle><jtitle>arXiv.org</jtitle><date>2009-05-13</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>We present and discuss a variance-reduced stochastic particle method for simulating the relaxation-time model of the Boltzmann transport equation. The present paper focuses on the dilute gas case, although the method is expected to directly extend to all fields (carriers) for which the relaxation-time approximation is reasonable. The variance reduction, achieved by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage compared to traditional stochastic particle methods in the limit of small deviation from equilibrium. More specifically, the proposed method can efficiently simulate arbitrarily small deviations from equilibrium at a computational cost that is independent of the deviation from equilibrium, which is in sharp contrast to traditional particle methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2009-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087646812 |
source | Freely Accessible Journals |
subjects | Boltzmann transport equation Computational efficiency Computer simulation Computing time Deviation Equilibrium Monte Carlo simulation Particle methods (mathematics) Transport equations Variance |
title | Low-variance Monte Carlo Solutions of the Boltzmann Transport Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Low-variance%20Monte%20Carlo%20Solutions%20of%20the%20Boltzmann%20Transport%20Equation&rft.jtitle=arXiv.org&rft.au=Hadjiconstantinou,%20Nicolas%20G&rft.date=2009-05-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087646812%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087646812&rft_id=info:pmid/&rfr_iscdi=true |