When is the {I}sbell topology a group topology?
Conditions on a topological space \(X\) under which the space \(C(X,\mathbb{R})\) of continuous real-valued maps with the Isbell topology \(\kappa \) is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in \(C_{...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dolecki, S Mynard, F |
description | Conditions on a topological space \(X\) under which the space \(C(X,\mathbb{R})\) of continuous real-valued maps with the Isbell topology \(\kappa \) is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in \(C_{\kappa}(X,\mathbb{R})\) if and only if \(X\) is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in \(C_{\kappa}(X,\mathbb{R})\) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if \(X\) is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087610718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087610718</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876107183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQD89IzVPILFYoyUhVqPasLU5KzclRKMkvyM_JT69USFRIL8ovLYAL2PMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgYW5maGBuaGFMXGqACUrMq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087610718</pqid></control><display><type>article</type><title>When is the {I}sbell topology a group topology?</title><source>Free E- Journals</source><creator>Dolecki, S ; Mynard, F</creator><creatorcontrib>Dolecki, S ; Mynard, F</creatorcontrib><description>Conditions on a topological space \(X\) under which the space \(C(X,\mathbb{R})\) of continuous real-valued maps with the Isbell topology \(\kappa \) is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in \(C_{\kappa}(X,\mathbb{R})\) if and only if \(X\) is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in \(C_{\kappa}(X,\mathbb{R})\) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if \(X\) is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Consonants (speech) ; Continuity (mathematics) ; Topology ; Translations</subject><ispartof>arXiv.org, 2010-02</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dolecki, S</creatorcontrib><creatorcontrib>Mynard, F</creatorcontrib><title>When is the {I}sbell topology a group topology?</title><title>arXiv.org</title><description>Conditions on a topological space \(X\) under which the space \(C(X,\mathbb{R})\) of continuous real-valued maps with the Isbell topology \(\kappa \) is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in \(C_{\kappa}(X,\mathbb{R})\) if and only if \(X\) is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in \(C_{\kappa}(X,\mathbb{R})\) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if \(X\) is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.</description><subject>Consonants (speech)</subject><subject>Continuity (mathematics)</subject><subject>Topology</subject><subject>Translations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQD89IzVPILFYoyUhVqPasLU5KzclRKMkvyM_JT69USFRIL8ovLYAL2PMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgYW5maGBuaGFMXGqACUrMq0</recordid><startdate>20100215</startdate><enddate>20100215</enddate><creator>Dolecki, S</creator><creator>Mynard, F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100215</creationdate><title>When is the {I}sbell topology a group topology?</title><author>Dolecki, S ; Mynard, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876107183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Consonants (speech)</topic><topic>Continuity (mathematics)</topic><topic>Topology</topic><topic>Translations</topic><toplevel>online_resources</toplevel><creatorcontrib>Dolecki, S</creatorcontrib><creatorcontrib>Mynard, F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolecki, S</au><au>Mynard, F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>When is the {I}sbell topology a group topology?</atitle><jtitle>arXiv.org</jtitle><date>2010-02-15</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>Conditions on a topological space \(X\) under which the space \(C(X,\mathbb{R})\) of continuous real-valued maps with the Isbell topology \(\kappa \) is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in \(C_{\kappa}(X,\mathbb{R})\) if and only if \(X\) is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in \(C_{\kappa}(X,\mathbb{R})\) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if \(X\) is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087610718 |
source | Free E- Journals |
subjects | Consonants (speech) Continuity (mathematics) Topology Translations |
title | When is the {I}sbell topology a group topology? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=When%20is%20the%20%7BI%7Dsbell%20topology%20a%20group%20topology?&rft.jtitle=arXiv.org&rft.au=Dolecki,%20S&rft.date=2010-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087610718%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087610718&rft_id=info:pmid/&rfr_iscdi=true |