Rational knot concordance and homology cobordism

The following is a long-standing open question: "If the zero-framed surgeries on two knots in the 3-sphere are integral homology cobordant, are the knots themselves concordant?" We show that an obvious rational version of this question has a negative answer. Namely, we give examples of kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-11
Hauptverfasser: Cochran, Tim D, Franklin, Bridget D, Horn, Peter D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cochran, Tim D
Franklin, Bridget D
Horn, Peter D
description The following is a long-standing open question: "If the zero-framed surgeries on two knots in the 3-sphere are integral homology cobordant, are the knots themselves concordant?" We show that an obvious rational version of this question has a negative answer. Namely, we give examples of knots whose zero-framed surgeries are rational homology cobordant 3-manifolds, wherein the knots are not rationally concordant (that is not concordant in any rational homology S^3 x [0,1]). Specifically, we prove that, for any positive integer p and any knot K, the zero framed surgery on K is Z[1/p]-homology cobordant to the zero framed surgery on its (p,1) cable. Then we observe that most knots are not rationally concordant to their (p,1) cables.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087605921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087605921</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876059213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCEosyczPS8xRyM7LL1FIzs9Lzi9KScxLTlVIzEtRyMjPzc_JT68ESiQBxTOLc3kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pEdDA4ngjAwtzMwNTSyNDY-JUAQCV5zN9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087605921</pqid></control><display><type>article</type><title>Rational knot concordance and homology cobordism</title><source>Free E- Journals</source><creator>Cochran, Tim D ; Franklin, Bridget D ; Horn, Peter D</creator><creatorcontrib>Cochran, Tim D ; Franklin, Bridget D ; Horn, Peter D</creatorcontrib><description>The following is a long-standing open question: "If the zero-framed surgeries on two knots in the 3-sphere are integral homology cobordant, are the knots themselves concordant?" We show that an obvious rational version of this question has a negative answer. Namely, we give examples of knots whose zero-framed surgeries are rational homology cobordant 3-manifolds, wherein the knots are not rationally concordant (that is not concordant in any rational homology S^3 x [0,1]). Specifically, we prove that, for any positive integer p and any knot K, the zero framed surgery on K is Z[1/p]-homology cobordant to the zero framed surgery on its (p,1) cable. Then we observe that most knots are not rationally concordant to their (p,1) cables.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cables ; Homology ; Knots ; Surgery</subject><ispartof>arXiv.org, 2010-11</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cochran, Tim D</creatorcontrib><creatorcontrib>Franklin, Bridget D</creatorcontrib><creatorcontrib>Horn, Peter D</creatorcontrib><title>Rational knot concordance and homology cobordism</title><title>arXiv.org</title><description>The following is a long-standing open question: "If the zero-framed surgeries on two knots in the 3-sphere are integral homology cobordant, are the knots themselves concordant?" We show that an obvious rational version of this question has a negative answer. Namely, we give examples of knots whose zero-framed surgeries are rational homology cobordant 3-manifolds, wherein the knots are not rationally concordant (that is not concordant in any rational homology S^3 x [0,1]). Specifically, we prove that, for any positive integer p and any knot K, the zero framed surgery on K is Z[1/p]-homology cobordant to the zero framed surgery on its (p,1) cable. Then we observe that most knots are not rationally concordant to their (p,1) cables.</description><subject>Cables</subject><subject>Homology</subject><subject>Knots</subject><subject>Surgery</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCEosyczPS8xRyM7LL1FIzs9Lzi9KScxLTlVIzEtRyMjPzc_JT68ESiQBxTOLc3kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pEdDA4ngjAwtzMwNTSyNDY-JUAQCV5zN9</recordid><startdate>20101124</startdate><enddate>20101124</enddate><creator>Cochran, Tim D</creator><creator>Franklin, Bridget D</creator><creator>Horn, Peter D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101124</creationdate><title>Rational knot concordance and homology cobordism</title><author>Cochran, Tim D ; Franklin, Bridget D ; Horn, Peter D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876059213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cables</topic><topic>Homology</topic><topic>Knots</topic><topic>Surgery</topic><toplevel>online_resources</toplevel><creatorcontrib>Cochran, Tim D</creatorcontrib><creatorcontrib>Franklin, Bridget D</creatorcontrib><creatorcontrib>Horn, Peter D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochran, Tim D</au><au>Franklin, Bridget D</au><au>Horn, Peter D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rational knot concordance and homology cobordism</atitle><jtitle>arXiv.org</jtitle><date>2010-11-24</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>The following is a long-standing open question: "If the zero-framed surgeries on two knots in the 3-sphere are integral homology cobordant, are the knots themselves concordant?" We show that an obvious rational version of this question has a negative answer. Namely, we give examples of knots whose zero-framed surgeries are rational homology cobordant 3-manifolds, wherein the knots are not rationally concordant (that is not concordant in any rational homology S^3 x [0,1]). Specifically, we prove that, for any positive integer p and any knot K, the zero framed surgery on K is Z[1/p]-homology cobordant to the zero framed surgery on its (p,1) cable. Then we observe that most knots are not rationally concordant to their (p,1) cables.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087605921
source Free E- Journals
subjects Cables
Homology
Knots
Surgery
title Rational knot concordance and homology cobordism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rational%20knot%20concordance%20and%20homology%20cobordism&rft.jtitle=arXiv.org&rft.au=Cochran,%20Tim%20D&rft.date=2010-11-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087605921%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087605921&rft_id=info:pmid/&rfr_iscdi=true