Lie superalgebras with some homogeneous structures
We generalize to the case of Lie superalgebras the classical symplectic double extension of symplectic Lie algebras introduced in [2]. We use this concept to give an inductive description of nilpotent homogeneous-symplectic Lie superalgebras. Several examples are included to show the existence of ho...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ayadi, Imen Benamor, Hedi Benayadi, Saïd |
description | We generalize to the case of Lie superalgebras the classical symplectic double extension of symplectic Lie algebras introduced in [2]. We use this concept to give an inductive description of nilpotent homogeneous-symplectic Lie superalgebras. Several examples are included to show the existence of homogeneous quadratic symplectic Lie superalgebras other than even-quadratic even-symplectic considered in [6]. We study the structures of even (resp. odd)-quadratic odd (resp. even)-symplectic Lie superalgebras and odd-quadratic odd-symplectic Lie superalgebras and we give its inductive descriptions in terms of quadratic generalized double extensions and odd quadratic generalized double extensions. This study complete the inductive descriptions of homogeneous quadratic symplectic Lie superalgebras started in [6]. Finally, we generalize to the case of homogeneous quadratic symplectic Lie superargebras some relations between even-quadratic even-symplectic Lie superalgebras and Manin superalgebras established in [6]. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087604029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087604029</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876040293</originalsourceid><addsrcrecordid>eNqNyrsKwkAQQNFFEAyaf1iwDqyzeVmLYmFpH6JMXiSZOLODv6-FH2B1i3NXJgLvD0mZAmxMLDI45yAvIMt8ZODWoxVdkOuxxQfXYt996KzQhLajiVqckVSsBNZnUEbZmXVTj4Lxr1uzv5zvp2uyML0UJVQDKc9fqsCVRe5SB0f_3_UBN6k0qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087604029</pqid></control><display><type>article</type><title>Lie superalgebras with some homogeneous structures</title><source>Free E- Journals</source><creator>Ayadi, Imen ; Benamor, Hedi ; Benayadi, Saïd</creator><creatorcontrib>Ayadi, Imen ; Benamor, Hedi ; Benayadi, Saïd</creatorcontrib><description>We generalize to the case of Lie superalgebras the classical symplectic double extension of symplectic Lie algebras introduced in [2]. We use this concept to give an inductive description of nilpotent homogeneous-symplectic Lie superalgebras. Several examples are included to show the existence of homogeneous quadratic symplectic Lie superalgebras other than even-quadratic even-symplectic considered in [6]. We study the structures of even (resp. odd)-quadratic odd (resp. even)-symplectic Lie superalgebras and odd-quadratic odd-symplectic Lie superalgebras and we give its inductive descriptions in terms of quadratic generalized double extensions and odd quadratic generalized double extensions. This study complete the inductive descriptions of homogeneous quadratic symplectic Lie superalgebras started in [6]. Finally, we generalize to the case of homogeneous quadratic symplectic Lie superargebras some relations between even-quadratic even-symplectic Lie superalgebras and Manin superalgebras established in [6].</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Descriptions ; Lie groups</subject><ispartof>arXiv.org, 2010-11</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ayadi, Imen</creatorcontrib><creatorcontrib>Benamor, Hedi</creatorcontrib><creatorcontrib>Benayadi, Saïd</creatorcontrib><title>Lie superalgebras with some homogeneous structures</title><title>arXiv.org</title><description>We generalize to the case of Lie superalgebras the classical symplectic double extension of symplectic Lie algebras introduced in [2]. We use this concept to give an inductive description of nilpotent homogeneous-symplectic Lie superalgebras. Several examples are included to show the existence of homogeneous quadratic symplectic Lie superalgebras other than even-quadratic even-symplectic considered in [6]. We study the structures of even (resp. odd)-quadratic odd (resp. even)-symplectic Lie superalgebras and odd-quadratic odd-symplectic Lie superalgebras and we give its inductive descriptions in terms of quadratic generalized double extensions and odd quadratic generalized double extensions. This study complete the inductive descriptions of homogeneous quadratic symplectic Lie superalgebras started in [6]. Finally, we generalize to the case of homogeneous quadratic symplectic Lie superargebras some relations between even-quadratic even-symplectic Lie superalgebras and Manin superalgebras established in [6].</description><subject>Descriptions</subject><subject>Lie groups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwkAQQNFFEAyaf1iwDqyzeVmLYmFpH6JMXiSZOLODv6-FH2B1i3NXJgLvD0mZAmxMLDI45yAvIMt8ZODWoxVdkOuxxQfXYt996KzQhLajiVqckVSsBNZnUEbZmXVTj4Lxr1uzv5zvp2uyML0UJVQDKc9fqsCVRe5SB0f_3_UBN6k0qg</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Ayadi, Imen</creator><creator>Benamor, Hedi</creator><creator>Benayadi, Saïd</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101110</creationdate><title>Lie superalgebras with some homogeneous structures</title><author>Ayadi, Imen ; Benamor, Hedi ; Benayadi, Saïd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876040293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Descriptions</topic><topic>Lie groups</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayadi, Imen</creatorcontrib><creatorcontrib>Benamor, Hedi</creatorcontrib><creatorcontrib>Benayadi, Saïd</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayadi, Imen</au><au>Benamor, Hedi</au><au>Benayadi, Saïd</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Lie superalgebras with some homogeneous structures</atitle><jtitle>arXiv.org</jtitle><date>2010-11-10</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>We generalize to the case of Lie superalgebras the classical symplectic double extension of symplectic Lie algebras introduced in [2]. We use this concept to give an inductive description of nilpotent homogeneous-symplectic Lie superalgebras. Several examples are included to show the existence of homogeneous quadratic symplectic Lie superalgebras other than even-quadratic even-symplectic considered in [6]. We study the structures of even (resp. odd)-quadratic odd (resp. even)-symplectic Lie superalgebras and odd-quadratic odd-symplectic Lie superalgebras and we give its inductive descriptions in terms of quadratic generalized double extensions and odd quadratic generalized double extensions. This study complete the inductive descriptions of homogeneous quadratic symplectic Lie superalgebras started in [6]. Finally, we generalize to the case of homogeneous quadratic symplectic Lie superargebras some relations between even-quadratic even-symplectic Lie superalgebras and Manin superalgebras established in [6].</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087604029 |
source | Free E- Journals |
subjects | Descriptions Lie groups |
title | Lie superalgebras with some homogeneous structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Lie%20superalgebras%20with%20some%20homogeneous%20structures&rft.jtitle=arXiv.org&rft.au=Ayadi,%20Imen&rft.date=2010-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087604029%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087604029&rft_id=info:pmid/&rfr_iscdi=true |