Matter Under Extreme Conditions: The Early Years
Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent kinetic energy cascade to Pla...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | R Norris Keeler Gibson, Carl H |
description | Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent kinetic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10^113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >10^25 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when inflation ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak turbulence until the plasma-gas transition give chains of protogalaxies with the morphology of turbulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Protogalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmological event. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087602918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087602918</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876029183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8E0sKUktUgjNSwGSrhUlRam5qQrO-XkpmSWZ-XnFVgohGakKrolFOZUKkamJRcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBhbmZgZGloYUycKgApnDKG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087602918</pqid></control><display><type>article</type><title>Matter Under Extreme Conditions: The Early Years</title><source>Free E- Journals</source><creator>R Norris Keeler ; Gibson, Carl H</creator><creatorcontrib>R Norris Keeler ; Gibson, Carl H</creatorcontrib><description>Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent kinetic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10^113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >10^25 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when inflation ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak turbulence until the plasma-gas transition give chains of protogalaxies with the morphology of turbulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Protogalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmological event.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antigravity ; Antiparticles ; Big bang cosmology ; Chains ; Clumps ; Computational fluid dynamics ; Cosmology ; Dynamic stability ; Extrasolar planets ; Fossils ; Galactic clusters ; Galaxies ; Gravitational collapse ; Kinetic energy ; Morphology ; Oceans ; Organic chemistry ; Supernovae ; Turbulence ; Turbulent combustion ; Turbulent mixing ; Universe ; Variation ; Vorticity</subject><ispartof>arXiv.org, 2010-11</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>R Norris Keeler</creatorcontrib><creatorcontrib>Gibson, Carl H</creatorcontrib><title>Matter Under Extreme Conditions: The Early Years</title><title>arXiv.org</title><description>Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent kinetic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10^113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >10^25 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when inflation ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak turbulence until the plasma-gas transition give chains of protogalaxies with the morphology of turbulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Protogalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmological event.</description><subject>Antigravity</subject><subject>Antiparticles</subject><subject>Big bang cosmology</subject><subject>Chains</subject><subject>Clumps</subject><subject>Computational fluid dynamics</subject><subject>Cosmology</subject><subject>Dynamic stability</subject><subject>Extrasolar planets</subject><subject>Fossils</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Gravitational collapse</subject><subject>Kinetic energy</subject><subject>Morphology</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Supernovae</subject><subject>Turbulence</subject><subject>Turbulent combustion</subject><subject>Turbulent mixing</subject><subject>Universe</subject><subject>Variation</subject><subject>Vorticity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8E0sKUktUgjNSwGSrhUlRam5qQrO-XkpmSWZ-XnFVgohGakKrolFOZUKkamJRcU8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBhbmZgZGloYUycKgApnDKG</recordid><startdate>20101113</startdate><enddate>20101113</enddate><creator>R Norris Keeler</creator><creator>Gibson, Carl H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101113</creationdate><title>Matter Under Extreme Conditions: The Early Years</title><author>R Norris Keeler ; Gibson, Carl H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876029183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antigravity</topic><topic>Antiparticles</topic><topic>Big bang cosmology</topic><topic>Chains</topic><topic>Clumps</topic><topic>Computational fluid dynamics</topic><topic>Cosmology</topic><topic>Dynamic stability</topic><topic>Extrasolar planets</topic><topic>Fossils</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Gravitational collapse</topic><topic>Kinetic energy</topic><topic>Morphology</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Supernovae</topic><topic>Turbulence</topic><topic>Turbulent combustion</topic><topic>Turbulent mixing</topic><topic>Universe</topic><topic>Variation</topic><topic>Vorticity</topic><toplevel>online_resources</toplevel><creatorcontrib>R Norris Keeler</creatorcontrib><creatorcontrib>Gibson, Carl H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R Norris Keeler</au><au>Gibson, Carl H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Matter Under Extreme Conditions: The Early Years</atitle><jtitle>arXiv.org</jtitle><date>2010-11-13</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent kinetic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10^113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >10^25 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when inflation ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak turbulence until the plasma-gas transition give chains of protogalaxies with the morphology of turbulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Protogalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmological event.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087602918 |
source | Free E- Journals |
subjects | Antigravity Antiparticles Big bang cosmology Chains Clumps Computational fluid dynamics Cosmology Dynamic stability Extrasolar planets Fossils Galactic clusters Galaxies Gravitational collapse Kinetic energy Morphology Oceans Organic chemistry Supernovae Turbulence Turbulent combustion Turbulent mixing Universe Variation Vorticity |
title | Matter Under Extreme Conditions: The Early Years |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Matter%20Under%20Extreme%20Conditions:%20The%20Early%20Years&rft.jtitle=arXiv.org&rft.au=R%20Norris%20Keeler&rft.date=2010-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087602918%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087602918&rft_id=info:pmid/&rfr_iscdi=true |