Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes

Quantum Monte Carlo (QMC) is a stochastic method that has been particularly successful for ground-state electronic structure calculations but mostly unexplored for the computation of excited-state energies. Here, we show that within a Jastrow-free QMC protocol relying on a deterministic and systemat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-07, Vol.149 (3), p.034108-034108
Hauptverfasser: Scemama, Anthony, Benali, Anouar, Jacquemin, Denis, Caffarel, Michel, Loos, Pierre-François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum Monte Carlo (QMC) is a stochastic method that has been particularly successful for ground-state electronic structure calculations but mostly unexplored for the computation of excited-state energies. Here, we show that within a Jastrow-free QMC protocol relying on a deterministic and systematic construction of nodal surfaces using selected configuration interaction (sCI) expansions, one is able to obtain accurate excitation energies at the fixed-node diffusion Monte Carlo (FN-DMC) level. This evidences that the fixed-node errors in the ground and excited states obtained with sCI wave functions cancel out to a large extent. Our procedure is tested on two small organic molecules (water and formaldehyde) for which we report all-electron FN-DMC calculations. For both the singlet and triplet manifolds, accurate vertical excitation energies are obtained with relatively compact multideterminant expansions built with small (typically double-ζ) basis sets.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5041327