Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding

We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-10, Vol.149 (16), p.163324-163324
Hauptverfasser: Ran, Qidi, Xu, Xiao, Dey, Pradip, Yu, Shun, Lu, Yan, Dzubiella, Joachim, Haag, Rainer, Ballauff, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163324
container_issue 16
container_start_page 163324
container_title The Journal of chemical physics
container_volume 149
creator Ran, Qidi
Xu, Xiao
Dey, Pradip
Yu, Shun
Lu, Yan
Dzubiella, Joachim
Haag, Rainer
Ballauff, Matthias
description We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.
doi_str_mv 10.1063/1.5030601
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2087551123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087551123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-e476bfdf5127cae8ea936a474bb2349a037b79cba5cb35ed23c134c2b483117d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVI6G7SHvoHiiCXJuB09GHLzq2EfEEgENKzkWQ5q0WWtpJMcH99vN1NDz3kMMxhHh6Y90XoK4ELAhX7QS5KYFABOUBLAnVTiKqBQ7QEoKRoKqgW6DilNQAQQfkntGDAai7KaonSvc8mSp1t8Dj0eDUO0uNk4jhg6dQ4WI9fbV7hzvgu2mw13gQ3vbhJmxgcTqPrZTaX-EluFdLZP9a_4Lwy24lD6CYvB6vTVq6s7-brZ3TUS5fMl_0-Qb9urp-v7oqHx9v7q58PhWa8zoXholJ915eECi1NbWTDKskFV4oy3khgQolGK1lqxUrTUaYJ45oqXjNCRMdO0PeddxPD79Gk3A42aeOc9CaMqaWENiWr58Bm9PQ_dB3GOL8zU1CLsiSEspk621E6hpSi6dtNtIOMU0ug3TbRknbfxMx-2xtHNZjuH_ke_Qyc74Ckbf4b3ge2NyS-kb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087551123</pqid></control><display><type>article</type><title>Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ran, Qidi ; Xu, Xiao ; Dey, Pradip ; Yu, Shun ; Lu, Yan ; Dzubiella, Joachim ; Haag, Rainer ; Ballauff, Matthias</creator><creatorcontrib>Ran, Qidi ; Xu, Xiao ; Dey, Pradip ; Yu, Shun ; Lu, Yan ; Dzubiella, Joachim ; Haag, Rainer ; Ballauff, Matthias</creatorcontrib><description>We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5030601</identifier><identifier>PMID: 30384756</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binding ; Calorimetry ; Compensation ; Computer simulation ; Dichroism ; Enthalpy ; Entropy ; Free energy ; Gibbs free energy ; Glycerol - chemistry ; Humans ; Models, Molecular ; Molecular dynamics ; Nonlinear analysis ; Physics ; Polymers - chemistry ; Protein Binding ; Serum albumin ; Serum Albumin, Human - chemistry ; Specific heat ; Temperature ; Temperature dependence ; Thermodynamics ; Titration calorimetry</subject><ispartof>The Journal of chemical physics, 2018-10, Vol.149 (16), p.163324-163324</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-e476bfdf5127cae8ea936a474bb2349a037b79cba5cb35ed23c134c2b483117d3</citedby><cites>FETCH-LOGICAL-c348t-e476bfdf5127cae8ea936a474bb2349a037b79cba5cb35ed23c134c2b483117d3</cites><orcidid>0000-0003-0872-1438 ; 0000-0002-1302-0874 ; 0000000213020874 ; 0000000308721438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5030601$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,782,786,796,4514,27931,27932,76392</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30384756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ran, Qidi</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Dey, Pradip</creatorcontrib><creatorcontrib>Yu, Shun</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Dzubiella, Joachim</creatorcontrib><creatorcontrib>Haag, Rainer</creatorcontrib><creatorcontrib>Ballauff, Matthias</creatorcontrib><title>Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.</description><subject>Binding</subject><subject>Calorimetry</subject><subject>Compensation</subject><subject>Computer simulation</subject><subject>Dichroism</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Glycerol - chemistry</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Nonlinear analysis</subject><subject>Physics</subject><subject>Polymers - chemistry</subject><subject>Protein Binding</subject><subject>Serum albumin</subject><subject>Serum Albumin, Human - chemistry</subject><subject>Specific heat</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermodynamics</subject><subject>Titration calorimetry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVI6G7SHvoHiiCXJuB09GHLzq2EfEEgENKzkWQ5q0WWtpJMcH99vN1NDz3kMMxhHh6Y90XoK4ELAhX7QS5KYFABOUBLAnVTiKqBQ7QEoKRoKqgW6DilNQAQQfkntGDAai7KaonSvc8mSp1t8Dj0eDUO0uNk4jhg6dQ4WI9fbV7hzvgu2mw13gQ3vbhJmxgcTqPrZTaX-EluFdLZP9a_4Lwy24lD6CYvB6vTVq6s7-brZ3TUS5fMl_0-Qb9urp-v7oqHx9v7q58PhWa8zoXholJ915eECi1NbWTDKskFV4oy3khgQolGK1lqxUrTUaYJ45oqXjNCRMdO0PeddxPD79Gk3A42aeOc9CaMqaWENiWr58Bm9PQ_dB3GOL8zU1CLsiSEspk621E6hpSi6dtNtIOMU0ug3TbRknbfxMx-2xtHNZjuH_ke_Qyc74Ckbf4b3ge2NyS-kb4</recordid><startdate>20181028</startdate><enddate>20181028</enddate><creator>Ran, Qidi</creator><creator>Xu, Xiao</creator><creator>Dey, Pradip</creator><creator>Yu, Shun</creator><creator>Lu, Yan</creator><creator>Dzubiella, Joachim</creator><creator>Haag, Rainer</creator><creator>Ballauff, Matthias</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0872-1438</orcidid><orcidid>https://orcid.org/0000-0002-1302-0874</orcidid><orcidid>https://orcid.org/0000000213020874</orcidid><orcidid>https://orcid.org/0000000308721438</orcidid></search><sort><creationdate>20181028</creationdate><title>Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding</title><author>Ran, Qidi ; Xu, Xiao ; Dey, Pradip ; Yu, Shun ; Lu, Yan ; Dzubiella, Joachim ; Haag, Rainer ; Ballauff, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-e476bfdf5127cae8ea936a474bb2349a037b79cba5cb35ed23c134c2b483117d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding</topic><topic>Calorimetry</topic><topic>Compensation</topic><topic>Computer simulation</topic><topic>Dichroism</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Glycerol - chemistry</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Nonlinear analysis</topic><topic>Physics</topic><topic>Polymers - chemistry</topic><topic>Protein Binding</topic><topic>Serum albumin</topic><topic>Serum Albumin, Human - chemistry</topic><topic>Specific heat</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermodynamics</topic><topic>Titration calorimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran, Qidi</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Dey, Pradip</creatorcontrib><creatorcontrib>Yu, Shun</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Dzubiella, Joachim</creatorcontrib><creatorcontrib>Haag, Rainer</creatorcontrib><creatorcontrib>Ballauff, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ran, Qidi</au><au>Xu, Xiao</au><au>Dey, Pradip</au><au>Yu, Shun</au><au>Lu, Yan</au><au>Dzubiella, Joachim</au><au>Haag, Rainer</au><au>Ballauff, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-10-28</date><risdate>2018</risdate><volume>149</volume><issue>16</issue><spage>163324</spage><epage>163324</epage><pages>163324-163324</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30384756</pmid><doi>10.1063/1.5030601</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0872-1438</orcidid><orcidid>https://orcid.org/0000-0002-1302-0874</orcidid><orcidid>https://orcid.org/0000000213020874</orcidid><orcidid>https://orcid.org/0000000308721438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-10, Vol.149 (16), p.163324-163324
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2087551123
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Binding
Calorimetry
Compensation
Computer simulation
Dichroism
Enthalpy
Entropy
Free energy
Gibbs free energy
Glycerol - chemistry
Humans
Models, Molecular
Molecular dynamics
Nonlinear analysis
Physics
Polymers - chemistry
Protein Binding
Serum albumin
Serum Albumin, Human - chemistry
Specific heat
Temperature
Temperature dependence
Thermodynamics
Titration calorimetry
title Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20human%20serum%20albumin%20with%20dendritic%20polyglycerol%20sulfate:%20Rationalizing%20the%20thermodynamics%20of%20binding&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ran,%20Qidi&rft.date=2018-10-28&rft.volume=149&rft.issue=16&rft.spage=163324&rft.epage=163324&rft.pages=163324-163324&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5030601&rft_dat=%3Cproquest_scita%3E2087551123%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087551123&rft_id=info:pmid/30384756&rfr_iscdi=true