Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding
We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2018-10, Vol.149 (16), p.163324-163324 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163324 |
---|---|
container_issue | 16 |
container_start_page | 163324 |
container_title | The Journal of chemical physics |
container_volume | 149 |
creator | Ran, Qidi Xu, Xiao Dey, Pradip Yu, Shun Lu, Yan Dzubiella, Joachim Haag, Rainer Ballauff, Matthias |
description | We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions. |
doi_str_mv | 10.1063/1.5030601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2087551123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087551123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-e476bfdf5127cae8ea936a474bb2349a037b79cba5cb35ed23c134c2b483117d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVI6G7SHvoHiiCXJuB09GHLzq2EfEEgENKzkWQ5q0WWtpJMcH99vN1NDz3kMMxhHh6Y90XoK4ELAhX7QS5KYFABOUBLAnVTiKqBQ7QEoKRoKqgW6DilNQAQQfkntGDAai7KaonSvc8mSp1t8Dj0eDUO0uNk4jhg6dQ4WI9fbV7hzvgu2mw13gQ3vbhJmxgcTqPrZTaX-EluFdLZP9a_4Lwy24lD6CYvB6vTVq6s7-brZ3TUS5fMl_0-Qb9urp-v7oqHx9v7q58PhWa8zoXholJ915eECi1NbWTDKskFV4oy3khgQolGK1lqxUrTUaYJ45oqXjNCRMdO0PeddxPD79Gk3A42aeOc9CaMqaWENiWr58Bm9PQ_dB3GOL8zU1CLsiSEspk621E6hpSi6dtNtIOMU0ug3TbRknbfxMx-2xtHNZjuH_ke_Qyc74Ckbf4b3ge2NyS-kb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087551123</pqid></control><display><type>article</type><title>Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ran, Qidi ; Xu, Xiao ; Dey, Pradip ; Yu, Shun ; Lu, Yan ; Dzubiella, Joachim ; Haag, Rainer ; Ballauff, Matthias</creator><creatorcontrib>Ran, Qidi ; Xu, Xiao ; Dey, Pradip ; Yu, Shun ; Lu, Yan ; Dzubiella, Joachim ; Haag, Rainer ; Ballauff, Matthias</creatorcontrib><description>We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5030601</identifier><identifier>PMID: 30384756</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binding ; Calorimetry ; Compensation ; Computer simulation ; Dichroism ; Enthalpy ; Entropy ; Free energy ; Gibbs free energy ; Glycerol - chemistry ; Humans ; Models, Molecular ; Molecular dynamics ; Nonlinear analysis ; Physics ; Polymers - chemistry ; Protein Binding ; Serum albumin ; Serum Albumin, Human - chemistry ; Specific heat ; Temperature ; Temperature dependence ; Thermodynamics ; Titration calorimetry</subject><ispartof>The Journal of chemical physics, 2018-10, Vol.149 (16), p.163324-163324</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-e476bfdf5127cae8ea936a474bb2349a037b79cba5cb35ed23c134c2b483117d3</citedby><cites>FETCH-LOGICAL-c348t-e476bfdf5127cae8ea936a474bb2349a037b79cba5cb35ed23c134c2b483117d3</cites><orcidid>0000-0003-0872-1438 ; 0000-0002-1302-0874 ; 0000000213020874 ; 0000000308721438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5030601$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,782,786,796,4514,27931,27932,76392</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30384756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ran, Qidi</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Dey, Pradip</creatorcontrib><creatorcontrib>Yu, Shun</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Dzubiella, Joachim</creatorcontrib><creatorcontrib>Haag, Rainer</creatorcontrib><creatorcontrib>Ballauff, Matthias</creatorcontrib><title>Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.</description><subject>Binding</subject><subject>Calorimetry</subject><subject>Compensation</subject><subject>Computer simulation</subject><subject>Dichroism</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Glycerol - chemistry</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Nonlinear analysis</subject><subject>Physics</subject><subject>Polymers - chemistry</subject><subject>Protein Binding</subject><subject>Serum albumin</subject><subject>Serum Albumin, Human - chemistry</subject><subject>Specific heat</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermodynamics</subject><subject>Titration calorimetry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1r3DAQhkVI6G7SHvoHiiCXJuB09GHLzq2EfEEgENKzkWQ5q0WWtpJMcH99vN1NDz3kMMxhHh6Y90XoK4ELAhX7QS5KYFABOUBLAnVTiKqBQ7QEoKRoKqgW6DilNQAQQfkntGDAai7KaonSvc8mSp1t8Dj0eDUO0uNk4jhg6dQ4WI9fbV7hzvgu2mw13gQ3vbhJmxgcTqPrZTaX-EluFdLZP9a_4Lwy24lD6CYvB6vTVq6s7-brZ3TUS5fMl_0-Qb9urp-v7oqHx9v7q58PhWa8zoXholJ915eECi1NbWTDKskFV4oy3khgQolGK1lqxUrTUaYJ45oqXjNCRMdO0PeddxPD79Gk3A42aeOc9CaMqaWENiWr58Bm9PQ_dB3GOL8zU1CLsiSEspk621E6hpSi6dtNtIOMU0ug3TbRknbfxMx-2xtHNZjuH_ke_Qyc74Ckbf4b3ge2NyS-kb4</recordid><startdate>20181028</startdate><enddate>20181028</enddate><creator>Ran, Qidi</creator><creator>Xu, Xiao</creator><creator>Dey, Pradip</creator><creator>Yu, Shun</creator><creator>Lu, Yan</creator><creator>Dzubiella, Joachim</creator><creator>Haag, Rainer</creator><creator>Ballauff, Matthias</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0872-1438</orcidid><orcidid>https://orcid.org/0000-0002-1302-0874</orcidid><orcidid>https://orcid.org/0000000213020874</orcidid><orcidid>https://orcid.org/0000000308721438</orcidid></search><sort><creationdate>20181028</creationdate><title>Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding</title><author>Ran, Qidi ; Xu, Xiao ; Dey, Pradip ; Yu, Shun ; Lu, Yan ; Dzubiella, Joachim ; Haag, Rainer ; Ballauff, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-e476bfdf5127cae8ea936a474bb2349a037b79cba5cb35ed23c134c2b483117d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding</topic><topic>Calorimetry</topic><topic>Compensation</topic><topic>Computer simulation</topic><topic>Dichroism</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Glycerol - chemistry</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Nonlinear analysis</topic><topic>Physics</topic><topic>Polymers - chemistry</topic><topic>Protein Binding</topic><topic>Serum albumin</topic><topic>Serum Albumin, Human - chemistry</topic><topic>Specific heat</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermodynamics</topic><topic>Titration calorimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ran, Qidi</creatorcontrib><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Dey, Pradip</creatorcontrib><creatorcontrib>Yu, Shun</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Dzubiella, Joachim</creatorcontrib><creatorcontrib>Haag, Rainer</creatorcontrib><creatorcontrib>Ballauff, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ran, Qidi</au><au>Xu, Xiao</au><au>Dey, Pradip</au><au>Yu, Shun</au><au>Lu, Yan</au><au>Dzubiella, Joachim</au><au>Haag, Rainer</au><au>Ballauff, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-10-28</date><risdate>2018</risdate><volume>149</volume><issue>16</issue><spage>163324</spage><epage>163324</epage><pages>163324-163324</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van’t Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30384756</pmid><doi>10.1063/1.5030601</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0872-1438</orcidid><orcidid>https://orcid.org/0000-0002-1302-0874</orcidid><orcidid>https://orcid.org/0000000213020874</orcidid><orcidid>https://orcid.org/0000000308721438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2018-10, Vol.149 (16), p.163324-163324 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2087551123 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | Binding Calorimetry Compensation Computer simulation Dichroism Enthalpy Entropy Free energy Gibbs free energy Glycerol - chemistry Humans Models, Molecular Molecular dynamics Nonlinear analysis Physics Polymers - chemistry Protein Binding Serum albumin Serum Albumin, Human - chemistry Specific heat Temperature Temperature dependence Thermodynamics Titration calorimetry |
title | Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T10%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20human%20serum%20albumin%20with%20dendritic%20polyglycerol%20sulfate:%20Rationalizing%20the%20thermodynamics%20of%20binding&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ran,%20Qidi&rft.date=2018-10-28&rft.volume=149&rft.issue=16&rft.spage=163324&rft.epage=163324&rft.pages=163324-163324&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5030601&rft_dat=%3Cproquest_scita%3E2087551123%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087551123&rft_id=info:pmid/30384756&rfr_iscdi=true |