Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator

We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-07, Vol.113 (5)
Hauptverfasser: Cox, L., Croxford, A., Drinkwater, B. W., Marzo, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics letters
container_volume 113
creator Cox, L.
Croxford, A.
Drinkwater, B. W.
Marzo, A.
description We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.
doi_str_mv 10.1063/1.5042518
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2087551068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087551068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-2b7979686fc18158f72efdcc1fa33811a25bbf5e61a71071fb7b2d99cc72cf8d3</originalsourceid><addsrcrecordid>eNqdkM1KxDAUhYMoOP4sfIOAK4WMuYlpUnci_sGALnRd0jSZidakJu2o7-BD23EU964uB757DnwIHQCdAi34CUwFPWUC1AaaAJWScAC1iSaUUk6KUsA22sn5aYyCcT5Bn-cmDrn3Bs-ieT7D9zH73seAdWhwTN6GXn_nPumu82GOo8MhBpK7hU3e6BbnoSZvemlbG-b9Anc6jXWtzdgH_OIbon3CQ169arw6rSX63Wesf5dbu_TjSkx7aMvpNtv9n7uLHq8uHy5uyOzu-vbifEbMKVM9YbUsZVmowhlQIJSTzLrGGHCacwWgmahrJ2wBWo4OwNWyZk1ZGiOZcarhu-hw3dul-DrY3FdPcUhhnKwYVVKIUaUaqaM1ZVLMOVlXdcm_6PRRAa1WsiuofmSP7PGazcavhf0PXsb0B1Zd4_gXZOCQLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087551068</pqid></control><display><type>article</type><title>Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cox, L. ; Croxford, A. ; Drinkwater, B. W. ; Marzo, A.</creator><creatorcontrib>Cox, L. ; Croxford, A. ; Drinkwater, B. W. ; Marzo, A.</creatorcontrib><description>We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5042518</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic levitation ; Acoustics ; Applied physics ; Containment ; Convergence ; Crickets ; Cubes ; Cylinders ; Insects ; Locks ; Multiplexing ; Orientation ; Pyramids ; Standing waves ; Stiffness ; Torque ; Trapping</subject><ispartof>Applied physics letters, 2018-07, Vol.113 (5)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-2b7979686fc18158f72efdcc1fa33811a25bbf5e61a71071fb7b2d99cc72cf8d3</citedby><cites>FETCH-LOGICAL-c428t-2b7979686fc18158f72efdcc1fa33811a25bbf5e61a71071fb7b2d99cc72cf8d3</cites><orcidid>0000-0002-3634-525X ; 0000-0001-6433-1528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5042518$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Cox, L.</creatorcontrib><creatorcontrib>Croxford, A.</creatorcontrib><creatorcontrib>Drinkwater, B. W.</creatorcontrib><creatorcontrib>Marzo, A.</creatorcontrib><title>Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator</title><title>Applied physics letters</title><description>We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.</description><subject>Acoustic levitation</subject><subject>Acoustics</subject><subject>Applied physics</subject><subject>Containment</subject><subject>Convergence</subject><subject>Crickets</subject><subject>Cubes</subject><subject>Cylinders</subject><subject>Insects</subject><subject>Locks</subject><subject>Multiplexing</subject><subject>Orientation</subject><subject>Pyramids</subject><subject>Standing waves</subject><subject>Stiffness</subject><subject>Torque</subject><subject>Trapping</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KxDAUhYMoOP4sfIOAK4WMuYlpUnci_sGALnRd0jSZidakJu2o7-BD23EU964uB757DnwIHQCdAi34CUwFPWUC1AaaAJWScAC1iSaUUk6KUsA22sn5aYyCcT5Bn-cmDrn3Bs-ieT7D9zH73seAdWhwTN6GXn_nPumu82GOo8MhBpK7hU3e6BbnoSZvemlbG-b9Anc6jXWtzdgH_OIbon3CQ169arw6rSX63Wesf5dbu_TjSkx7aMvpNtv9n7uLHq8uHy5uyOzu-vbifEbMKVM9YbUsZVmowhlQIJSTzLrGGHCacwWgmahrJ2wBWo4OwNWyZk1ZGiOZcarhu-hw3dul-DrY3FdPcUhhnKwYVVKIUaUaqaM1ZVLMOVlXdcm_6PRRAa1WsiuofmSP7PGazcavhf0PXsb0B1Zd4_gXZOCQLA</recordid><startdate>20180730</startdate><enddate>20180730</enddate><creator>Cox, L.</creator><creator>Croxford, A.</creator><creator>Drinkwater, B. W.</creator><creator>Marzo, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3634-525X</orcidid><orcidid>https://orcid.org/0000-0001-6433-1528</orcidid></search><sort><creationdate>20180730</creationdate><title>Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator</title><author>Cox, L. ; Croxford, A. ; Drinkwater, B. W. ; Marzo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-2b7979686fc18158f72efdcc1fa33811a25bbf5e61a71071fb7b2d99cc72cf8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic levitation</topic><topic>Acoustics</topic><topic>Applied physics</topic><topic>Containment</topic><topic>Convergence</topic><topic>Crickets</topic><topic>Cubes</topic><topic>Cylinders</topic><topic>Insects</topic><topic>Locks</topic><topic>Multiplexing</topic><topic>Orientation</topic><topic>Pyramids</topic><topic>Standing waves</topic><topic>Stiffness</topic><topic>Torque</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, L.</creatorcontrib><creatorcontrib>Croxford, A.</creatorcontrib><creatorcontrib>Drinkwater, B. W.</creatorcontrib><creatorcontrib>Marzo, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, L.</au><au>Croxford, A.</au><au>Drinkwater, B. W.</au><au>Marzo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator</atitle><jtitle>Applied physics letters</jtitle><date>2018-07-30</date><risdate>2018</risdate><volume>113</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042518</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3634-525X</orcidid><orcidid>https://orcid.org/0000-0001-6433-1528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-07, Vol.113 (5)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2087551068
source AIP Journals Complete; Alma/SFX Local Collection
subjects Acoustic levitation
Acoustics
Applied physics
Containment
Convergence
Crickets
Cubes
Cylinders
Insects
Locks
Multiplexing
Orientation
Pyramids
Standing waves
Stiffness
Torque
Trapping
title Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Lock:%20Position%20and%20orientation%20trapping%20of%20non-spherical%20sub-wavelength%20particles%20in%20mid-air%20using%20a%20single-axis%20acoustic%20levitator&rft.jtitle=Applied%20physics%20letters&rft.au=Cox,%20L.&rft.date=2018-07-30&rft.volume=113&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5042518&rft_dat=%3Cproquest_cross%3E2087551068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087551068&rft_id=info:pmid/&rfr_iscdi=true