Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator
We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2018-07, Vol.113 (5) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 113 |
creator | Cox, L. Croxford, A. Drinkwater, B. W. Marzo, A. |
description | We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning. |
doi_str_mv | 10.1063/1.5042518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2087551068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087551068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-2b7979686fc18158f72efdcc1fa33811a25bbf5e61a71071fb7b2d99cc72cf8d3</originalsourceid><addsrcrecordid>eNqdkM1KxDAUhYMoOP4sfIOAK4WMuYlpUnci_sGALnRd0jSZidakJu2o7-BD23EU964uB757DnwIHQCdAi34CUwFPWUC1AaaAJWScAC1iSaUUk6KUsA22sn5aYyCcT5Bn-cmDrn3Bs-ieT7D9zH73seAdWhwTN6GXn_nPumu82GOo8MhBpK7hU3e6BbnoSZvemlbG-b9Anc6jXWtzdgH_OIbon3CQ169arw6rSX63Wesf5dbu_TjSkx7aMvpNtv9n7uLHq8uHy5uyOzu-vbifEbMKVM9YbUsZVmowhlQIJSTzLrGGHCacwWgmahrJ2wBWo4OwNWyZk1ZGiOZcarhu-hw3dul-DrY3FdPcUhhnKwYVVKIUaUaqaM1ZVLMOVlXdcm_6PRRAa1WsiuofmSP7PGazcavhf0PXsb0B1Zd4_gXZOCQLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087551068</pqid></control><display><type>article</type><title>Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cox, L. ; Croxford, A. ; Drinkwater, B. W. ; Marzo, A.</creator><creatorcontrib>Cox, L. ; Croxford, A. ; Drinkwater, B. W. ; Marzo, A.</creatorcontrib><description>We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5042518</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic levitation ; Acoustics ; Applied physics ; Containment ; Convergence ; Crickets ; Cubes ; Cylinders ; Insects ; Locks ; Multiplexing ; Orientation ; Pyramids ; Standing waves ; Stiffness ; Torque ; Trapping</subject><ispartof>Applied physics letters, 2018-07, Vol.113 (5)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-2b7979686fc18158f72efdcc1fa33811a25bbf5e61a71071fb7b2d99cc72cf8d3</citedby><cites>FETCH-LOGICAL-c428t-2b7979686fc18158f72efdcc1fa33811a25bbf5e61a71071fb7b2d99cc72cf8d3</cites><orcidid>0000-0002-3634-525X ; 0000-0001-6433-1528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5042518$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Cox, L.</creatorcontrib><creatorcontrib>Croxford, A.</creatorcontrib><creatorcontrib>Drinkwater, B. W.</creatorcontrib><creatorcontrib>Marzo, A.</creatorcontrib><title>Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator</title><title>Applied physics letters</title><description>We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.</description><subject>Acoustic levitation</subject><subject>Acoustics</subject><subject>Applied physics</subject><subject>Containment</subject><subject>Convergence</subject><subject>Crickets</subject><subject>Cubes</subject><subject>Cylinders</subject><subject>Insects</subject><subject>Locks</subject><subject>Multiplexing</subject><subject>Orientation</subject><subject>Pyramids</subject><subject>Standing waves</subject><subject>Stiffness</subject><subject>Torque</subject><subject>Trapping</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KxDAUhYMoOP4sfIOAK4WMuYlpUnci_sGALnRd0jSZidakJu2o7-BD23EU964uB757DnwIHQCdAi34CUwFPWUC1AaaAJWScAC1iSaUUk6KUsA22sn5aYyCcT5Bn-cmDrn3Bs-ieT7D9zH73seAdWhwTN6GXn_nPumu82GOo8MhBpK7hU3e6BbnoSZvemlbG-b9Anc6jXWtzdgH_OIbon3CQ169arw6rSX63Wesf5dbu_TjSkx7aMvpNtv9n7uLHq8uHy5uyOzu-vbifEbMKVM9YbUsZVmowhlQIJSTzLrGGHCacwWgmahrJ2wBWo4OwNWyZk1ZGiOZcarhu-hw3dul-DrY3FdPcUhhnKwYVVKIUaUaqaM1ZVLMOVlXdcm_6PRRAa1WsiuofmSP7PGazcavhf0PXsb0B1Zd4_gXZOCQLA</recordid><startdate>20180730</startdate><enddate>20180730</enddate><creator>Cox, L.</creator><creator>Croxford, A.</creator><creator>Drinkwater, B. W.</creator><creator>Marzo, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3634-525X</orcidid><orcidid>https://orcid.org/0000-0001-6433-1528</orcidid></search><sort><creationdate>20180730</creationdate><title>Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator</title><author>Cox, L. ; Croxford, A. ; Drinkwater, B. W. ; Marzo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-2b7979686fc18158f72efdcc1fa33811a25bbf5e61a71071fb7b2d99cc72cf8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic levitation</topic><topic>Acoustics</topic><topic>Applied physics</topic><topic>Containment</topic><topic>Convergence</topic><topic>Crickets</topic><topic>Cubes</topic><topic>Cylinders</topic><topic>Insects</topic><topic>Locks</topic><topic>Multiplexing</topic><topic>Orientation</topic><topic>Pyramids</topic><topic>Standing waves</topic><topic>Stiffness</topic><topic>Torque</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, L.</creatorcontrib><creatorcontrib>Croxford, A.</creatorcontrib><creatorcontrib>Drinkwater, B. W.</creatorcontrib><creatorcontrib>Marzo, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, L.</au><au>Croxford, A.</au><au>Drinkwater, B. W.</au><au>Marzo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator</atitle><jtitle>Applied physics letters</jtitle><date>2018-07-30</date><risdate>2018</risdate><volume>113</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We demonstrate acoustic trapping in both position and orientation of a non-spherical particle of sub-wavelength size in mid-air. To do so, we multiplex in time a pseudo-one-dimensional vertical standing wave and a twin-trap; the vertical standing wave provides converging forces that trap in position, whereas the twin-trap applies a stabilising torque that locks the orientation. The device operates at 40 kHz, and the employed multiplexing ratio of the 2 acoustic fields is 100:50 (standing:twin) periods. This ratio can be changed to provide tunability of the relative trapping strength and converging torque. The torsional spring stiffness of the trap is measured through simulations and experiments with good agreement. Cubes from λ/5.56 (1.5 mm) to λ/2.5 (3.4 mm) side length were stably locked. We also apply this technique to lock different non-spherical particles in mid-air: cubes, pyramids, cylinders, and insects such as flies and crickets. This technique adds significant functionality to mid-air acoustic levitation and will enable applications in micro-scale manufacturing as well as containment of specimens for examination and 3D-scanning.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5042518</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3634-525X</orcidid><orcidid>https://orcid.org/0000-0001-6433-1528</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2018-07, Vol.113 (5) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2087551068 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Acoustic levitation Acoustics Applied physics Containment Convergence Crickets Cubes Cylinders Insects Locks Multiplexing Orientation Pyramids Standing waves Stiffness Torque Trapping |
title | Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Lock:%20Position%20and%20orientation%20trapping%20of%20non-spherical%20sub-wavelength%20particles%20in%20mid-air%20using%20a%20single-axis%20acoustic%20levitator&rft.jtitle=Applied%20physics%20letters&rft.au=Cox,%20L.&rft.date=2018-07-30&rft.volume=113&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5042518&rft_dat=%3Cproquest_cross%3E2087551068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087551068&rft_id=info:pmid/&rfr_iscdi=true |