Second symmetric powers of chain complexes

We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-01
Hauptverfasser: Frankild, Anders J, Sather-Wagstaff, Sean, Taylor, Amelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Frankild, Anders J
Sather-Wagstaff, Sean
Taylor, Amelia
description We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following version of a result of Avramov, Buchweitz, and Sega: Let R \to S be a module-finite ring homomorphism such that R is noetherian and local, and such that 2 is a unit in R. Let X be a complex of finite rank free S-modules such that X_n = 0 for each n < 0. If \cup_n Ass_R(H_n(X \otimes_S X)) \subseteq Ass(R) and if X_P \simeq S_P for each P \in Ass(R), then X \simeq S.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087509150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087509150</sourcerecordid><originalsourceid>FETCH-proquest_journals_20875091503</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCk5Nzs9LUSiuzM1NLSnKTFYoyC9PLSpWyE9TSM5IzMxTSM7PLchJrUgt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDC3NTA0tDUwNj4lQBADNRMRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087509150</pqid></control><display><type>article</type><title>Second symmetric powers of chain complexes</title><source>Freely Accessible Journals_</source><creator>Frankild, Anders J ; Sather-Wagstaff, Sean ; Taylor, Amelia</creator><creatorcontrib>Frankild, Anders J ; Sather-Wagstaff, Sean ; Taylor, Amelia</creatorcontrib><description>We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following version of a result of Avramov, Buchweitz, and Sega: Let R \to S be a module-finite ring homomorphism such that R is noetherian and local, and such that 2 is a unit in R. Let X be a complex of finite rank free S-modules such that X_n = 0 for each n &lt; 0. If \cup_n Ass_R(H_n(X \otimes_S X)) \subseteq Ass(R) and if X_P \simeq S_P for each P \in Ass(R), then X \simeq S.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chains ; Homomorphisms ; Modules</subject><ispartof>arXiv.org, 2010-01</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Frankild, Anders J</creatorcontrib><creatorcontrib>Sather-Wagstaff, Sean</creatorcontrib><creatorcontrib>Taylor, Amelia</creatorcontrib><title>Second symmetric powers of chain complexes</title><title>arXiv.org</title><description>We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following version of a result of Avramov, Buchweitz, and Sega: Let R \to S be a module-finite ring homomorphism such that R is noetherian and local, and such that 2 is a unit in R. Let X be a complex of finite rank free S-modules such that X_n = 0 for each n &lt; 0. If \cup_n Ass_R(H_n(X \otimes_S X)) \subseteq Ass(R) and if X_P \simeq S_P for each P \in Ass(R), then X \simeq S.</description><subject>Chains</subject><subject>Homomorphisms</subject><subject>Modules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCk5Nzs9LUSiuzM1NLSnKTFYoyC9PLSpWyE9TSM5IzMxTSM7PLchJrUgt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDC3NTA0tDUwNj4lQBADNRMRo</recordid><startdate>20100118</startdate><enddate>20100118</enddate><creator>Frankild, Anders J</creator><creator>Sather-Wagstaff, Sean</creator><creator>Taylor, Amelia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100118</creationdate><title>Second symmetric powers of chain complexes</title><author>Frankild, Anders J ; Sather-Wagstaff, Sean ; Taylor, Amelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20875091503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chains</topic><topic>Homomorphisms</topic><topic>Modules</topic><toplevel>online_resources</toplevel><creatorcontrib>Frankild, Anders J</creatorcontrib><creatorcontrib>Sather-Wagstaff, Sean</creatorcontrib><creatorcontrib>Taylor, Amelia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frankild, Anders J</au><au>Sather-Wagstaff, Sean</au><au>Taylor, Amelia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Second symmetric powers of chain complexes</atitle><jtitle>arXiv.org</jtitle><date>2010-01-18</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following version of a result of Avramov, Buchweitz, and Sega: Let R \to S be a module-finite ring homomorphism such that R is noetherian and local, and such that 2 is a unit in R. Let X be a complex of finite rank free S-modules such that X_n = 0 for each n &lt; 0. If \cup_n Ass_R(H_n(X \otimes_S X)) \subseteq Ass(R) and if X_P \simeq S_P for each P \in Ass(R), then X \simeq S.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087509150
source Freely Accessible Journals_
subjects Chains
Homomorphisms
Modules
title Second symmetric powers of chain complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Second%20symmetric%20powers%20of%20chain%20complexes&rft.jtitle=arXiv.org&rft.au=Frankild,%20Anders%20J&rft.date=2010-01-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087509150%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087509150&rft_id=info:pmid/&rfr_iscdi=true