Second symmetric powers of chain complexes
We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several e...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Frankild, Anders J Sather-Wagstaff, Sean Taylor, Amelia |
description | We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following version of a result of Avramov, Buchweitz, and Sega: Let R \to S be a module-finite ring homomorphism such that R is noetherian and local, and such that 2 is a unit in R. Let X be a complex of finite rank free S-modules such that X_n = 0 for each n < 0. If \cup_n Ass_R(H_n(X \otimes_S X)) \subseteq Ass(R) and if X_P \simeq S_P for each P \in Ass(R), then X \simeq S. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087509150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087509150</sourcerecordid><originalsourceid>FETCH-proquest_journals_20875091503</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCk5Nzs9LUSiuzM1NLSnKTFYoyC9PLSpWyE9TSM5IzMxTSM7PLchJrUgt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDC3NTA0tDUwNj4lQBADNRMRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087509150</pqid></control><display><type>article</type><title>Second symmetric powers of chain complexes</title><source>Freely Accessible Journals_</source><creator>Frankild, Anders J ; Sather-Wagstaff, Sean ; Taylor, Amelia</creator><creatorcontrib>Frankild, Anders J ; Sather-Wagstaff, Sean ; Taylor, Amelia</creatorcontrib><description>We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following version of a result of Avramov, Buchweitz, and Sega: Let R \to S be a module-finite ring homomorphism such that R is noetherian and local, and such that 2 is a unit in R. Let X be a complex of finite rank free S-modules such that X_n = 0 for each n < 0. If \cup_n Ass_R(H_n(X \otimes_S X)) \subseteq Ass(R) and if X_P \simeq S_P for each P \in Ass(R), then X \simeq S.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chains ; Homomorphisms ; Modules</subject><ispartof>arXiv.org, 2010-01</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Frankild, Anders J</creatorcontrib><creatorcontrib>Sather-Wagstaff, Sean</creatorcontrib><creatorcontrib>Taylor, Amelia</creatorcontrib><title>Second symmetric powers of chain complexes</title><title>arXiv.org</title><description>We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following version of a result of Avramov, Buchweitz, and Sega: Let R \to S be a module-finite ring homomorphism such that R is noetherian and local, and such that 2 is a unit in R. Let X be a complex of finite rank free S-modules such that X_n = 0 for each n < 0. If \cup_n Ass_R(H_n(X \otimes_S X)) \subseteq Ass(R) and if X_P \simeq S_P for each P \in Ass(R), then X \simeq S.</description><subject>Chains</subject><subject>Homomorphisms</subject><subject>Modules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCk5Nzs9LUSiuzM1NLSnKTFYoyC9PLSpWyE9TSM5IzMxTSM7PLchJrUgt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDC3NTA0tDUwNj4lQBADNRMRo</recordid><startdate>20100118</startdate><enddate>20100118</enddate><creator>Frankild, Anders J</creator><creator>Sather-Wagstaff, Sean</creator><creator>Taylor, Amelia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100118</creationdate><title>Second symmetric powers of chain complexes</title><author>Frankild, Anders J ; Sather-Wagstaff, Sean ; Taylor, Amelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20875091503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chains</topic><topic>Homomorphisms</topic><topic>Modules</topic><toplevel>online_resources</toplevel><creatorcontrib>Frankild, Anders J</creatorcontrib><creatorcontrib>Sather-Wagstaff, Sean</creatorcontrib><creatorcontrib>Taylor, Amelia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frankild, Anders J</au><au>Sather-Wagstaff, Sean</au><au>Taylor, Amelia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Second symmetric powers of chain complexes</atitle><jtitle>arXiv.org</jtitle><date>2010-01-18</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>We investigate Buchbaum and Eisenbud's construction of the second symmetric power S^2_R(X) of a chain complex X of modules over a commutative ring R. We state and prove a number of results from the folklore of the subject for which we know of no good direct references. We also provide several explicit computations and examples. We use this construction to prove the following version of a result of Avramov, Buchweitz, and Sega: Let R \to S be a module-finite ring homomorphism such that R is noetherian and local, and such that 2 is a unit in R. Let X be a complex of finite rank free S-modules such that X_n = 0 for each n < 0. If \cup_n Ass_R(H_n(X \otimes_S X)) \subseteq Ass(R) and if X_P \simeq S_P for each P \in Ass(R), then X \simeq S.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087509150 |
source | Freely Accessible Journals_ |
subjects | Chains Homomorphisms Modules |
title | Second symmetric powers of chain complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Second%20symmetric%20powers%20of%20chain%20complexes&rft.jtitle=arXiv.org&rft.au=Frankild,%20Anders%20J&rft.date=2010-01-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087509150%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087509150&rft_id=info:pmid/&rfr_iscdi=true |