Fault tolerant quantum key distribution based on quantum dense coding with collective noise

We present two robust quantum key distribution protocols against two kinds of collective noise, following some ideas in quantum dense coding. Three-qubit entangled states are used as quantum information carriers, two of which forming the logical qubit which is invariant with a special type of collec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-01
Hauptverfasser: Xi-Han, Li, Bao-Kui Zhao, Yu-Bo, Sheng, Fu-Guo, Deng, Hong-Yu, Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xi-Han, Li
Bao-Kui Zhao
Yu-Bo, Sheng
Fu-Guo, Deng
Hong-Yu, Zhou
description We present two robust quantum key distribution protocols against two kinds of collective noise, following some ideas in quantum dense coding. Three-qubit entangled states are used as quantum information carriers, two of which forming the logical qubit which is invariant with a special type of collective noise. The information is encoded on logical qubits with four unitary operations, which can be read out faithfully with Bell-state analysis on two physical qubits and a single-photon measurement on the other physical qubit, not three-photon joint measurements. Two bits of information are exchanged faithfully and securely by transmitting two physical qubits through a noisy channel. When the losses in the noisy channel is low, these protocols can be used to transmit a secret message directly in principle.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087503676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087503676</sourcerecordid><originalsourceid>FETCH-proquest_journals_20875036763</originalsourceid><addsrcrecordid>eNqNissKwjAUBYMgWLT_cMF1ISb2sReLH-DORUmbq6bGxOah-PdmoXs35wzMzEjGON8UzZaxBcm9HymlrKpZWfKMnFoRdYBgNTphAkwxbbzDDd8glQ9O9TEoa6AXHiUk-BUSjUcYrFTmAi8Vrom1xiGoJ4KxyuOKzM9Ce8y_vyTrdn_cHYqHs1NEH7rRRmeS6hht6pLyqq74f9UH_WlD_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087503676</pqid></control><display><type>article</type><title>Fault tolerant quantum key distribution based on quantum dense coding with collective noise</title><source>Freely Accessible Journals</source><creator>Xi-Han, Li ; Bao-Kui Zhao ; Yu-Bo, Sheng ; Fu-Guo, Deng ; Hong-Yu, Zhou</creator><creatorcontrib>Xi-Han, Li ; Bao-Kui Zhao ; Yu-Bo, Sheng ; Fu-Guo, Deng ; Hong-Yu, Zhou</creatorcontrib><description>We present two robust quantum key distribution protocols against two kinds of collective noise, following some ideas in quantum dense coding. Three-qubit entangled states are used as quantum information carriers, two of which forming the logical qubit which is invariant with a special type of collective noise. The information is encoded on logical qubits with four unitary operations, which can be read out faithfully with Bell-state analysis on two physical qubits and a single-photon measurement on the other physical qubit, not three-photon joint measurements. Two bits of information are exchanged faithfully and securely by transmitting two physical qubits through a noisy channel. When the losses in the noisy channel is low, these protocols can be used to transmit a secret message directly in principle.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Entangled states ; Fault tolerance ; Noise ; Quantum cryptography ; Quantum phenomena ; Quantum theory ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2010-01</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Xi-Han, Li</creatorcontrib><creatorcontrib>Bao-Kui Zhao</creatorcontrib><creatorcontrib>Yu-Bo, Sheng</creatorcontrib><creatorcontrib>Fu-Guo, Deng</creatorcontrib><creatorcontrib>Hong-Yu, Zhou</creatorcontrib><title>Fault tolerant quantum key distribution based on quantum dense coding with collective noise</title><title>arXiv.org</title><description>We present two robust quantum key distribution protocols against two kinds of collective noise, following some ideas in quantum dense coding. Three-qubit entangled states are used as quantum information carriers, two of which forming the logical qubit which is invariant with a special type of collective noise. The information is encoded on logical qubits with four unitary operations, which can be read out faithfully with Bell-state analysis on two physical qubits and a single-photon measurement on the other physical qubit, not three-photon joint measurements. Two bits of information are exchanged faithfully and securely by transmitting two physical qubits through a noisy channel. When the losses in the noisy channel is low, these protocols can be used to transmit a secret message directly in principle.</description><subject>Coding</subject><subject>Entangled states</subject><subject>Fault tolerance</subject><subject>Noise</subject><subject>Quantum cryptography</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKwjAUBYMgWLT_cMF1ISb2sReLH-DORUmbq6bGxOah-PdmoXs35wzMzEjGON8UzZaxBcm9HymlrKpZWfKMnFoRdYBgNTphAkwxbbzDDd8glQ9O9TEoa6AXHiUk-BUSjUcYrFTmAi8Vrom1xiGoJ4KxyuOKzM9Ce8y_vyTrdn_cHYqHs1NEH7rRRmeS6hht6pLyqq74f9UH_WlD_w</recordid><startdate>20100112</startdate><enddate>20100112</enddate><creator>Xi-Han, Li</creator><creator>Bao-Kui Zhao</creator><creator>Yu-Bo, Sheng</creator><creator>Fu-Guo, Deng</creator><creator>Hong-Yu, Zhou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100112</creationdate><title>Fault tolerant quantum key distribution based on quantum dense coding with collective noise</title><author>Xi-Han, Li ; Bao-Kui Zhao ; Yu-Bo, Sheng ; Fu-Guo, Deng ; Hong-Yu, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20875036763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Coding</topic><topic>Entangled states</topic><topic>Fault tolerance</topic><topic>Noise</topic><topic>Quantum cryptography</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Xi-Han, Li</creatorcontrib><creatorcontrib>Bao-Kui Zhao</creatorcontrib><creatorcontrib>Yu-Bo, Sheng</creatorcontrib><creatorcontrib>Fu-Guo, Deng</creatorcontrib><creatorcontrib>Hong-Yu, Zhou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi-Han, Li</au><au>Bao-Kui Zhao</au><au>Yu-Bo, Sheng</au><au>Fu-Guo, Deng</au><au>Hong-Yu, Zhou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fault tolerant quantum key distribution based on quantum dense coding with collective noise</atitle><jtitle>arXiv.org</jtitle><date>2010-01-12</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>We present two robust quantum key distribution protocols against two kinds of collective noise, following some ideas in quantum dense coding. Three-qubit entangled states are used as quantum information carriers, two of which forming the logical qubit which is invariant with a special type of collective noise. The information is encoded on logical qubits with four unitary operations, which can be read out faithfully with Bell-state analysis on two physical qubits and a single-photon measurement on the other physical qubit, not three-photon joint measurements. Two bits of information are exchanged faithfully and securely by transmitting two physical qubits through a noisy channel. When the losses in the noisy channel is low, these protocols can be used to transmit a secret message directly in principle.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087503676
source Freely Accessible Journals
subjects Coding
Entangled states
Fault tolerance
Noise
Quantum cryptography
Quantum phenomena
Quantum theory
Qubits (quantum computing)
title Fault tolerant quantum key distribution based on quantum dense coding with collective noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fault%20tolerant%20quantum%20key%20distribution%20based%20on%20quantum%20dense%20coding%20with%20collective%20noise&rft.jtitle=arXiv.org&rft.au=Xi-Han,%20Li&rft.date=2010-01-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087503676%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087503676&rft_id=info:pmid/&rfr_iscdi=true