Touchard like polynomials and generalized Stirling numbers
The theory of Touchard polynomials is generalized using a method based on the definition of exponential operators, which extend the notion of the shift operator. The proposed technique, along with the use of the relevant operational formalism, allows the straightforward derivation of properties of t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dattoli, G Germano, B Martinelli, M R Ricci, P E |
description | The theory of Touchard polynomials is generalized using a method based on the definition of exponential operators, which extend the notion of the shift operator. The proposed technique, along with the use of the relevant operational formalism, allows the straightforward derivation of properties of this family of polynomials and their relationship to different forms of Stirling numbers. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087384186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087384186</sourcerecordid><originalsourceid>FETCH-proquest_journals_20873841863</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC2nSn-AqirvdSzS3NTVN6k0z6NPbwQdwOsP5ViThQuSZLDjfkDSEgTHGq5qXpUjIofHx_lCoqTVPoJO3b-dHo2ygymnagwNU1nxA0-ts0BrXUxfHG2DYkXW3OEh_3ZL9-dQcL9mE_hUhzO3gI7pltZzJWsgil5X4T30BCCk3eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087384186</pqid></control><display><type>article</type><title>Touchard like polynomials and generalized Stirling numbers</title><source>Free E- Journals</source><creator>Dattoli, G ; Germano, B ; Martinelli, M R ; Ricci, P E</creator><creatorcontrib>Dattoli, G ; Germano, B ; Martinelli, M R ; Ricci, P E</creatorcontrib><description>The theory of Touchard polynomials is generalized using a method based on the definition of exponential operators, which extend the notion of the shift operator. The proposed technique, along with the use of the relevant operational formalism, allows the straightforward derivation of properties of this family of polynomials and their relationship to different forms of Stirling numbers.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Polynomials</subject><ispartof>arXiv.org, 2010-10</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dattoli, G</creatorcontrib><creatorcontrib>Germano, B</creatorcontrib><creatorcontrib>Martinelli, M R</creatorcontrib><creatorcontrib>Ricci, P E</creatorcontrib><title>Touchard like polynomials and generalized Stirling numbers</title><title>arXiv.org</title><description>The theory of Touchard polynomials is generalized using a method based on the definition of exponential operators, which extend the notion of the shift operator. The proposed technique, along with the use of the relevant operational formalism, allows the straightforward derivation of properties of this family of polynomials and their relationship to different forms of Stirling numbers.</description><subject>Combinatorial analysis</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC2nSn-AqirvdSzS3NTVN6k0z6NPbwQdwOsP5ViThQuSZLDjfkDSEgTHGq5qXpUjIofHx_lCoqTVPoJO3b-dHo2ygymnagwNU1nxA0-ts0BrXUxfHG2DYkXW3OEh_3ZL9-dQcL9mE_hUhzO3gI7pltZzJWsgil5X4T30BCCk3eA</recordid><startdate>20101028</startdate><enddate>20101028</enddate><creator>Dattoli, G</creator><creator>Germano, B</creator><creator>Martinelli, M R</creator><creator>Ricci, P E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101028</creationdate><title>Touchard like polynomials and generalized Stirling numbers</title><author>Dattoli, G ; Germano, B ; Martinelli, M R ; Ricci, P E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20873841863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combinatorial analysis</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dattoli, G</creatorcontrib><creatorcontrib>Germano, B</creatorcontrib><creatorcontrib>Martinelli, M R</creatorcontrib><creatorcontrib>Ricci, P E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dattoli, G</au><au>Germano, B</au><au>Martinelli, M R</au><au>Ricci, P E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Touchard like polynomials and generalized Stirling numbers</atitle><jtitle>arXiv.org</jtitle><date>2010-10-28</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>The theory of Touchard polynomials is generalized using a method based on the definition of exponential operators, which extend the notion of the shift operator. The proposed technique, along with the use of the relevant operational formalism, allows the straightforward derivation of properties of this family of polynomials and their relationship to different forms of Stirling numbers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087384186 |
source | Free E- Journals |
subjects | Combinatorial analysis Polynomials |
title | Touchard like polynomials and generalized Stirling numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Touchard%20like%20polynomials%20and%20generalized%20Stirling%20numbers&rft.jtitle=arXiv.org&rft.au=Dattoli,%20G&rft.date=2010-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087384186%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087384186&rft_id=info:pmid/&rfr_iscdi=true |