A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation

This paper describes the comprehensive mathematical modeling, simulation and finally validation the developed dynamic equations of a pressurizable liquid piston Stirling engine. The proposed system comprises of the main following components: solar fresnel lens, hot, cold and tuning liquid columns, r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2018-07, Vol.155, p.796-814
Hauptverfasser: Motamedi, Mahmoud, Ahmadi, Rouhollah, Jokar, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814
container_issue
container_start_page 796
container_title Energy (Oxford)
container_volume 155
creator Motamedi, Mahmoud
Ahmadi, Rouhollah
Jokar, H.
description This paper describes the comprehensive mathematical modeling, simulation and finally validation the developed dynamic equations of a pressurizable liquid piston Stirling engine. The proposed system comprises of the main following components: solar fresnel lens, hot, cold and tuning liquid columns, regenerator, solid pressure intensifier, liquid power piston and output water column. The mathematical modeling of the proposed system is divided into distinct parts, including dynamic of working gas pressure, hot, cold and tuning liquid columns and dynamic of the output part of the system. The obtained dynamic differential equations are rewritten to nine first order differential equations and solved employing 4th order Runge-Kutta numerical method. The pumping head of 1.5 m, the hot and cold side temperature of 100 °C and 20 °C, respectively and zero dead volumes are considered. It is obtained that the working gas pressure has the oscillatory behavior between two upper and lower points, frequently. According to the oscillatory dynamic of working gas pressure, when the working gas pressure is high enough, it can push the liquid power piston to overcome the static pressure of the output column of the pump and finally the water pumping occurs. •New solar pressurizable liquid piston Stirling engine is presented.•The mathematical modeling, simulation and validation of the proposed system are performed.•The pumping head, hot and cold side temperature are 1.5 m, 100 °C and 20 °C, respectively.•The pulse behavior of the system is depicted in inlet and outlet water flow diagrams.
doi_str_mv 10.1016/j.energy.2018.05.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2087377960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218308211</els_id><sourcerecordid>2087377960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-56516471af7e3e58ec21e92f3e0adb87c2253dcb8f55dad6d910703f300f8bb23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEPAa3edZDf74UEo4hcU9KDnkE1ma5b9aJPdQv31ptazlxlmeN93mIeQawYxA5bdNjH26Nb7mAMrYhAxAD8hM1bkSZTlhTglM0gyiESa8nNy4X0DAKIoyxnpltQPrXJ049D7ydlvVbVIW7udrKEb68ehp360rrX9mmK_tj3e0XflRsoWtFPjF4ZitWppNxg8qBbU225qwzZYVW_oTrXW_I6X5KxWrcervz4nn0-PHw8v0ert-fVhuYp0CjBGIhMsS3Om6hwTFAVqzrDkdYKgTFXkmnORGF0VtRBGmcyUDHJI6gSgLqqKJ3Nyc8zduGE7oR9lM0yuDyclh0Alz8sMgio9qrQbvHdYy42znXJ7yUAewMpGHsHKA1gJQgawwXZ_tGH4YGfRSa8t9hqNdahHaQb7f8APKfiE5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087377960</pqid></control><display><type>article</type><title>A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Motamedi, Mahmoud ; Ahmadi, Rouhollah ; Jokar, H.</creator><creatorcontrib>Motamedi, Mahmoud ; Ahmadi, Rouhollah ; Jokar, H.</creatorcontrib><description>This paper describes the comprehensive mathematical modeling, simulation and finally validation the developed dynamic equations of a pressurizable liquid piston Stirling engine. The proposed system comprises of the main following components: solar fresnel lens, hot, cold and tuning liquid columns, regenerator, solid pressure intensifier, liquid power piston and output water column. The mathematical modeling of the proposed system is divided into distinct parts, including dynamic of working gas pressure, hot, cold and tuning liquid columns and dynamic of the output part of the system. The obtained dynamic differential equations are rewritten to nine first order differential equations and solved employing 4th order Runge-Kutta numerical method. The pumping head of 1.5 m, the hot and cold side temperature of 100 °C and 20 °C, respectively and zero dead volumes are considered. It is obtained that the working gas pressure has the oscillatory behavior between two upper and lower points, frequently. According to the oscillatory dynamic of working gas pressure, when the working gas pressure is high enough, it can push the liquid power piston to overcome the static pressure of the output column of the pump and finally the water pumping occurs. •New solar pressurizable liquid piston Stirling engine is presented.•The mathematical modeling, simulation and validation of the proposed system are performed.•The pumping head, hot and cold side temperature are 1.5 m, 100 °C and 20 °C, respectively.•The pulse behavior of the system is depicted in inlet and outlet water flow diagrams.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.05.002</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cold pressing ; Computer simulation ; Differential equations ; Fluidyne ; Gas pressure ; Heat engines ; Mathematical analysis ; Mathematical models ; Numerical methods ; Numerical simulation ; Pressure ; Pumping ; Pumping head ; Pumps ; Runge-Kutta method ; Simulation ; Solar pump ; Static pressure ; Stirling pump ; Tuning ; Water column</subject><ispartof>Energy (Oxford), 2018-07, Vol.155, p.796-814</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-56516471af7e3e58ec21e92f3e0adb87c2253dcb8f55dad6d910703f300f8bb23</citedby><cites>FETCH-LOGICAL-c400t-56516471af7e3e58ec21e92f3e0adb87c2253dcb8f55dad6d910703f300f8bb23</cites><orcidid>0000-0002-4747-505X ; 0000-0001-9360-4580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.05.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Motamedi, Mahmoud</creatorcontrib><creatorcontrib>Ahmadi, Rouhollah</creatorcontrib><creatorcontrib>Jokar, H.</creatorcontrib><title>A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation</title><title>Energy (Oxford)</title><description>This paper describes the comprehensive mathematical modeling, simulation and finally validation the developed dynamic equations of a pressurizable liquid piston Stirling engine. The proposed system comprises of the main following components: solar fresnel lens, hot, cold and tuning liquid columns, regenerator, solid pressure intensifier, liquid power piston and output water column. The mathematical modeling of the proposed system is divided into distinct parts, including dynamic of working gas pressure, hot, cold and tuning liquid columns and dynamic of the output part of the system. The obtained dynamic differential equations are rewritten to nine first order differential equations and solved employing 4th order Runge-Kutta numerical method. The pumping head of 1.5 m, the hot and cold side temperature of 100 °C and 20 °C, respectively and zero dead volumes are considered. It is obtained that the working gas pressure has the oscillatory behavior between two upper and lower points, frequently. According to the oscillatory dynamic of working gas pressure, when the working gas pressure is high enough, it can push the liquid power piston to overcome the static pressure of the output column of the pump and finally the water pumping occurs. •New solar pressurizable liquid piston Stirling engine is presented.•The mathematical modeling, simulation and validation of the proposed system are performed.•The pumping head, hot and cold side temperature are 1.5 m, 100 °C and 20 °C, respectively.•The pulse behavior of the system is depicted in inlet and outlet water flow diagrams.</description><subject>Cold pressing</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Fluidyne</subject><subject>Gas pressure</subject><subject>Heat engines</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Numerical simulation</subject><subject>Pressure</subject><subject>Pumping</subject><subject>Pumping head</subject><subject>Pumps</subject><subject>Runge-Kutta method</subject><subject>Simulation</subject><subject>Solar pump</subject><subject>Static pressure</subject><subject>Stirling pump</subject><subject>Tuning</subject><subject>Water column</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEPAa3edZDf74UEo4hcU9KDnkE1ma5b9aJPdQv31ptazlxlmeN93mIeQawYxA5bdNjH26Nb7mAMrYhAxAD8hM1bkSZTlhTglM0gyiESa8nNy4X0DAKIoyxnpltQPrXJ049D7ydlvVbVIW7udrKEb68ehp360rrX9mmK_tj3e0XflRsoWtFPjF4ZitWppNxg8qBbU225qwzZYVW_oTrXW_I6X5KxWrcervz4nn0-PHw8v0ert-fVhuYp0CjBGIhMsS3Om6hwTFAVqzrDkdYKgTFXkmnORGF0VtRBGmcyUDHJI6gSgLqqKJ3Nyc8zduGE7oR9lM0yuDyclh0Alz8sMgio9qrQbvHdYy42znXJ7yUAewMpGHsHKA1gJQgawwXZ_tGH4YGfRSa8t9hqNdahHaQb7f8APKfiE5g</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Motamedi, Mahmoud</creator><creator>Ahmadi, Rouhollah</creator><creator>Jokar, H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4747-505X</orcidid><orcidid>https://orcid.org/0000-0001-9360-4580</orcidid></search><sort><creationdate>20180715</creationdate><title>A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation</title><author>Motamedi, Mahmoud ; Ahmadi, Rouhollah ; Jokar, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-56516471af7e3e58ec21e92f3e0adb87c2253dcb8f55dad6d910703f300f8bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cold pressing</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Fluidyne</topic><topic>Gas pressure</topic><topic>Heat engines</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Numerical simulation</topic><topic>Pressure</topic><topic>Pumping</topic><topic>Pumping head</topic><topic>Pumps</topic><topic>Runge-Kutta method</topic><topic>Simulation</topic><topic>Solar pump</topic><topic>Static pressure</topic><topic>Stirling pump</topic><topic>Tuning</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motamedi, Mahmoud</creatorcontrib><creatorcontrib>Ahmadi, Rouhollah</creatorcontrib><creatorcontrib>Jokar, H.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Motamedi, Mahmoud</au><au>Ahmadi, Rouhollah</au><au>Jokar, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>155</volume><spage>796</spage><epage>814</epage><pages>796-814</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This paper describes the comprehensive mathematical modeling, simulation and finally validation the developed dynamic equations of a pressurizable liquid piston Stirling engine. The proposed system comprises of the main following components: solar fresnel lens, hot, cold and tuning liquid columns, regenerator, solid pressure intensifier, liquid power piston and output water column. The mathematical modeling of the proposed system is divided into distinct parts, including dynamic of working gas pressure, hot, cold and tuning liquid columns and dynamic of the output part of the system. The obtained dynamic differential equations are rewritten to nine first order differential equations and solved employing 4th order Runge-Kutta numerical method. The pumping head of 1.5 m, the hot and cold side temperature of 100 °C and 20 °C, respectively and zero dead volumes are considered. It is obtained that the working gas pressure has the oscillatory behavior between two upper and lower points, frequently. According to the oscillatory dynamic of working gas pressure, when the working gas pressure is high enough, it can push the liquid power piston to overcome the static pressure of the output column of the pump and finally the water pumping occurs. •New solar pressurizable liquid piston Stirling engine is presented.•The mathematical modeling, simulation and validation of the proposed system are performed.•The pumping head, hot and cold side temperature are 1.5 m, 100 °C and 20 °C, respectively.•The pulse behavior of the system is depicted in inlet and outlet water flow diagrams.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.05.002</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4747-505X</orcidid><orcidid>https://orcid.org/0000-0001-9360-4580</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2018-07, Vol.155, p.796-814
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2087377960
source Elsevier ScienceDirect Journals Complete
subjects Cold pressing
Computer simulation
Differential equations
Fluidyne
Gas pressure
Heat engines
Mathematical analysis
Mathematical models
Numerical methods
Numerical simulation
Pressure
Pumping
Pumping head
Pumps
Runge-Kutta method
Simulation
Solar pump
Static pressure
Stirling pump
Tuning
Water column
title A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20solar%20pressurizable%20liquid%20piston%20stirling%20engine:%20Part%201,%20mathematical%20modeling,%20simulation%20and%20validation&rft.jtitle=Energy%20(Oxford)&rft.au=Motamedi,%20Mahmoud&rft.date=2018-07-15&rft.volume=155&rft.spage=796&rft.epage=814&rft.pages=796-814&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.05.002&rft_dat=%3Cproquest_cross%3E2087377960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087377960&rft_id=info:pmid/&rft_els_id=S0360544218308211&rfr_iscdi=true