A solar pressurizable liquid piston stirling engine: Part 1, mathematical modeling, simulation and validation
This paper describes the comprehensive mathematical modeling, simulation and finally validation the developed dynamic equations of a pressurizable liquid piston Stirling engine. The proposed system comprises of the main following components: solar fresnel lens, hot, cold and tuning liquid columns, r...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2018-07, Vol.155, p.796-814 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes the comprehensive mathematical modeling, simulation and finally validation the developed dynamic equations of a pressurizable liquid piston Stirling engine. The proposed system comprises of the main following components: solar fresnel lens, hot, cold and tuning liquid columns, regenerator, solid pressure intensifier, liquid power piston and output water column. The mathematical modeling of the proposed system is divided into distinct parts, including dynamic of working gas pressure, hot, cold and tuning liquid columns and dynamic of the output part of the system. The obtained dynamic differential equations are rewritten to nine first order differential equations and solved employing 4th order Runge-Kutta numerical method. The pumping head of 1.5 m, the hot and cold side temperature of 100 °C and 20 °C, respectively and zero dead volumes are considered. It is obtained that the working gas pressure has the oscillatory behavior between two upper and lower points, frequently. According to the oscillatory dynamic of working gas pressure, when the working gas pressure is high enough, it can push the liquid power piston to overcome the static pressure of the output column of the pump and finally the water pumping occurs.
•New solar pressurizable liquid piston Stirling engine is presented.•The mathematical modeling, simulation and validation of the proposed system are performed.•The pumping head, hot and cold side temperature are 1.5 m, 100 °C and 20 °C, respectively.•The pulse behavior of the system is depicted in inlet and outlet water flow diagrams. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2018.05.002 |