Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators
Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2010-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hanan, William Mehta, Dhagash Moroz, Guillaume Pouryahya, Sepanda |
description | Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15]. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087186700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087186700</sourcerecordid><originalsourceid>FETCH-proquest_journals_20871867003</originalsourceid><addsrcrecordid>eNqNzL0OgjAUQOHGxESivEMTZ5LSys-qRKKLDrqTCgVKKhd72wGfXgcfwOksX86CBFyIOMp3nK9IiDgwxnia8SQRATnfnHxoo91M5djQg269raXTMNL9KM2MGim0tAA_GdXQUrt377s-usjOP4FesdbGSAcWN2TZSoMq_HVNtuXxXpyiycLLK3TVAN5-n1hxlmdxnmaMif_UB6TCPKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087186700</pqid></control><display><type>article</type><title>Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators</title><source>Free E- Journals</source><creator>Hanan, William ; Mehta, Dhagash ; Moroz, Guillaume ; Pouryahya, Sepanda</creator><creatorcontrib>Hanan, William ; Mehta, Dhagash ; Moroz, Guillaume ; Pouryahya, Sepanda</creatorcontrib><description>Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15].</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bifurcations ; Brain ; Linearity ; Mathematical models ; Neurons ; Nonlinear differential equations ; Nonlinear equations ; Nonlinearity ; Oscillators ; Polynomials ; Stability analysis ; Time series</subject><ispartof>arXiv.org, 2010-01</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hanan, William</creatorcontrib><creatorcontrib>Mehta, Dhagash</creatorcontrib><creatorcontrib>Moroz, Guillaume</creatorcontrib><creatorcontrib>Pouryahya, Sepanda</creatorcontrib><title>Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators</title><title>arXiv.org</title><description>Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15].</description><subject>Bifurcations</subject><subject>Brain</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Neurons</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>Polynomials</subject><subject>Stability analysis</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzL0OgjAUQOHGxESivEMTZ5LSys-qRKKLDrqTCgVKKhd72wGfXgcfwOksX86CBFyIOMp3nK9IiDgwxnia8SQRATnfnHxoo91M5djQg269raXTMNL9KM2MGim0tAA_GdXQUrt377s-usjOP4FesdbGSAcWN2TZSoMq_HVNtuXxXpyiycLLK3TVAN5-n1hxlmdxnmaMif_UB6TCPKs</recordid><startdate>20100129</startdate><enddate>20100129</enddate><creator>Hanan, William</creator><creator>Mehta, Dhagash</creator><creator>Moroz, Guillaume</creator><creator>Pouryahya, Sepanda</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100129</creationdate><title>Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators</title><author>Hanan, William ; Mehta, Dhagash ; Moroz, Guillaume ; Pouryahya, Sepanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20871867003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bifurcations</topic><topic>Brain</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Neurons</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>Polynomials</topic><topic>Stability analysis</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Hanan, William</creatorcontrib><creatorcontrib>Mehta, Dhagash</creatorcontrib><creatorcontrib>Moroz, Guillaume</creatorcontrib><creatorcontrib>Pouryahya, Sepanda</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanan, William</au><au>Mehta, Dhagash</au><au>Moroz, Guillaume</au><au>Pouryahya, Sepanda</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators</atitle><jtitle>arXiv.org</jtitle><date>2010-01-29</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15].</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087186700 |
source | Free E- Journals |
subjects | Bifurcations Brain Linearity Mathematical models Neurons Nonlinear differential equations Nonlinear equations Nonlinearity Oscillators Polynomials Stability analysis Time series |
title | Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stability%20and%20Bifurcation%20Analysis%20of%20Coupled%20Fitzhugh-Nagumo%20Oscillators&rft.jtitle=arXiv.org&rft.au=Hanan,%20William&rft.date=2010-01-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087186700%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087186700&rft_id=info:pmid/&rfr_iscdi=true |