Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators

Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-01
Hauptverfasser: Hanan, William, Mehta, Dhagash, Moroz, Guillaume, Pouryahya, Sepanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hanan, William
Mehta, Dhagash
Moroz, Guillaume
Pouryahya, Sepanda
description Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15].
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087186700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087186700</sourcerecordid><originalsourceid>FETCH-proquest_journals_20871867003</originalsourceid><addsrcrecordid>eNqNzL0OgjAUQOHGxESivEMTZ5LSys-qRKKLDrqTCgVKKhd72wGfXgcfwOksX86CBFyIOMp3nK9IiDgwxnia8SQRATnfnHxoo91M5djQg269raXTMNL9KM2MGim0tAA_GdXQUrt377s-usjOP4FesdbGSAcWN2TZSoMq_HVNtuXxXpyiycLLK3TVAN5-n1hxlmdxnmaMif_UB6TCPKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087186700</pqid></control><display><type>article</type><title>Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators</title><source>Free E- Journals</source><creator>Hanan, William ; Mehta, Dhagash ; Moroz, Guillaume ; Pouryahya, Sepanda</creator><creatorcontrib>Hanan, William ; Mehta, Dhagash ; Moroz, Guillaume ; Pouryahya, Sepanda</creatorcontrib><description>Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15].</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bifurcations ; Brain ; Linearity ; Mathematical models ; Neurons ; Nonlinear differential equations ; Nonlinear equations ; Nonlinearity ; Oscillators ; Polynomials ; Stability analysis ; Time series</subject><ispartof>arXiv.org, 2010-01</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hanan, William</creatorcontrib><creatorcontrib>Mehta, Dhagash</creatorcontrib><creatorcontrib>Moroz, Guillaume</creatorcontrib><creatorcontrib>Pouryahya, Sepanda</creatorcontrib><title>Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators</title><title>arXiv.org</title><description>Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15].</description><subject>Bifurcations</subject><subject>Brain</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Neurons</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>Polynomials</subject><subject>Stability analysis</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzL0OgjAUQOHGxESivEMTZ5LSys-qRKKLDrqTCgVKKhd72wGfXgcfwOksX86CBFyIOMp3nK9IiDgwxnia8SQRATnfnHxoo91M5djQg269raXTMNL9KM2MGim0tAA_GdXQUrt377s-usjOP4FesdbGSAcWN2TZSoMq_HVNtuXxXpyiycLLK3TVAN5-n1hxlmdxnmaMif_UB6TCPKs</recordid><startdate>20100129</startdate><enddate>20100129</enddate><creator>Hanan, William</creator><creator>Mehta, Dhagash</creator><creator>Moroz, Guillaume</creator><creator>Pouryahya, Sepanda</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100129</creationdate><title>Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators</title><author>Hanan, William ; Mehta, Dhagash ; Moroz, Guillaume ; Pouryahya, Sepanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20871867003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bifurcations</topic><topic>Brain</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Neurons</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>Polynomials</topic><topic>Stability analysis</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Hanan, William</creatorcontrib><creatorcontrib>Mehta, Dhagash</creatorcontrib><creatorcontrib>Moroz, Guillaume</creatorcontrib><creatorcontrib>Pouryahya, Sepanda</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanan, William</au><au>Mehta, Dhagash</au><au>Moroz, Guillaume</au><au>Pouryahya, Sepanda</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators</atitle><jtitle>arXiv.org</jtitle><date>2010-01-29</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>Neurons are the central biological objects in understanding how the brain works. The famous Hodgkin-Huxley model, which describes how action potentials of a neuron are initiated and propagated, consists of four coupled nonlinear differential equations. Because these equations are difficult to deal with, there also exist several simplified models, of which many exhibit polynomial-like non-linearity. Examples of such models are the Fitzhugh-Nagumo (FHN) model, the Hindmarsh-Rose (HR) model, the Morris-Lecar (ML) model and the Izhikevich model. In this work, we first prescribe the biologically relevant parameter ranges for the FHN model and subsequently study the dynamical behaviour of coupled neurons on small networks of two or three nodes. To do this, we use a computational real algebraic geometry method called the Discriminant Variety (DV) method to perform the stability and bifurcation analysis of these small networks. A time series analysis of the FHN model can be found elsewhere in related work[15].</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087186700
source Free E- Journals
subjects Bifurcations
Brain
Linearity
Mathematical models
Neurons
Nonlinear differential equations
Nonlinear equations
Nonlinearity
Oscillators
Polynomials
Stability analysis
Time series
title Stability and Bifurcation Analysis of Coupled Fitzhugh-Nagumo Oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stability%20and%20Bifurcation%20Analysis%20of%20Coupled%20Fitzhugh-Nagumo%20Oscillators&rft.jtitle=arXiv.org&rft.au=Hanan,%20William&rft.date=2010-01-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087186700%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087186700&rft_id=info:pmid/&rfr_iscdi=true