Non-Weyl Resonance Asymptotics for Quantum Graphs

We consider the resonances of a quantum graph \(\mathcal G\) that consists of a compact part with one or more infinite leads attached to it. We discuss the leading term of the asymptotics of the number of resonances of \(\mathcal G\) in a disc of a large radius. We call \(\mathcal G\) a \emph{Weyl g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-03
Hauptverfasser: Davies, E B, Pushnitski, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Davies, E B
Pushnitski, A
description We consider the resonances of a quantum graph \(\mathcal G\) that consists of a compact part with one or more infinite leads attached to it. We discuss the leading term of the asymptotics of the number of resonances of \(\mathcal G\) in a disc of a large radius. We call \(\mathcal G\) a \emph{Weyl graph} if the coefficient in front of this leading term coincides with the volume of the compact part of \(\mathcal G\). We give an explicit topological criterion for a graph to be Weyl. In the final section we analyze a particular example in some detail to explain how the transition from the Weyl to the non-Weyl case occurs.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087148061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087148061</sourcerecordid><originalsourceid>FETCH-proquest_journals_20871480613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9MvP0w1PrcxRCEotzs9LzEtOVXAsrswtKMkvyUwuVkjLL1IILE3MKynNVXAvSizIKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtzQxMLAzNDY-JUAQCe7zNu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087148061</pqid></control><display><type>article</type><title>Non-Weyl Resonance Asymptotics for Quantum Graphs</title><source>Free E- Journals</source><creator>Davies, E B ; Pushnitski, A</creator><creatorcontrib>Davies, E B ; Pushnitski, A</creatorcontrib><description>We consider the resonances of a quantum graph \(\mathcal G\) that consists of a compact part with one or more infinite leads attached to it. We discuss the leading term of the asymptotics of the number of resonances of \(\mathcal G\) in a disc of a large radius. We call \(\mathcal G\) a \emph{Weyl graph} if the coefficient in front of this leading term coincides with the volume of the compact part of \(\mathcal G\). We give an explicit topological criterion for a graph to be Weyl. In the final section we analyze a particular example in some detail to explain how the transition from the Weyl to the non-Weyl case occurs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties</subject><ispartof>arXiv.org, 2010-03</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Davies, E B</creatorcontrib><creatorcontrib>Pushnitski, A</creatorcontrib><title>Non-Weyl Resonance Asymptotics for Quantum Graphs</title><title>arXiv.org</title><description>We consider the resonances of a quantum graph \(\mathcal G\) that consists of a compact part with one or more infinite leads attached to it. We discuss the leading term of the asymptotics of the number of resonances of \(\mathcal G\) in a disc of a large radius. We call \(\mathcal G\) a \emph{Weyl graph} if the coefficient in front of this leading term coincides with the volume of the compact part of \(\mathcal G\). We give an explicit topological criterion for a graph to be Weyl. In the final section we analyze a particular example in some detail to explain how the transition from the Weyl to the non-Weyl case occurs.</description><subject>Asymptotic properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9MvP0w1PrcxRCEotzs9LzEtOVXAsrswtKMkvyUwuVkjLL1IILE3MKynNVXAvSizIKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtzQxMLAzNDY-JUAQCe7zNu</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Davies, E B</creator><creator>Pushnitski, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100301</creationdate><title>Non-Weyl Resonance Asymptotics for Quantum Graphs</title><author>Davies, E B ; Pushnitski, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20871480613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Asymptotic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Davies, E B</creatorcontrib><creatorcontrib>Pushnitski, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, E B</au><au>Pushnitski, A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Non-Weyl Resonance Asymptotics for Quantum Graphs</atitle><jtitle>arXiv.org</jtitle><date>2010-03-01</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>We consider the resonances of a quantum graph \(\mathcal G\) that consists of a compact part with one or more infinite leads attached to it. We discuss the leading term of the asymptotics of the number of resonances of \(\mathcal G\) in a disc of a large radius. We call \(\mathcal G\) a \emph{Weyl graph} if the coefficient in front of this leading term coincides with the volume of the compact part of \(\mathcal G\). We give an explicit topological criterion for a graph to be Weyl. In the final section we analyze a particular example in some detail to explain how the transition from the Weyl to the non-Weyl case occurs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087148061
source Free E- Journals
subjects Asymptotic properties
title Non-Weyl Resonance Asymptotics for Quantum Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Non-Weyl%20Resonance%20Asymptotics%20for%20Quantum%20Graphs&rft.jtitle=arXiv.org&rft.au=Davies,%20E%20B&rft.date=2010-03-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087148061%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087148061&rft_id=info:pmid/&rfr_iscdi=true