Fluctuations in the discrete TASEP with periodic initial configurations and the Airy_1 process
We consider the totally asymmetric simple exclusion process (TASEP) in discrete time with sequential update. The joint distribution of the positions of selected particles is expressed as a Fredholm determinant with a kernel defining a signed determinantal point process. We focus on periodic initial...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2006-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Borodin, Alexei Ferrari, Patrik L Prähofer, Michael |
description | We consider the totally asymmetric simple exclusion process (TASEP) in discrete time with sequential update. The joint distribution of the positions of selected particles is expressed as a Fredholm determinant with a kernel defining a signed determinantal point process. We focus on periodic initial conditions where particles occupy dZ, d>=2. In the proper large time scaling limit, the fluctuations of particle positions are described by the Airy_1 process. Interpreted as a growth model, this confirms universality of fluctuations with flat initial conditions for a discrete set of slopes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087028457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087028457</sourcerecordid><originalsourceid>FETCH-proquest_journals_20870284573</originalsourceid><addsrcrecordid>eNqNi80KgkAYAJcgSMp3-KCzsO1qepVQOgZ5TpZ1zU9k1_aH6O2T8AE6zWFmNiRinJ-SImVsR2LnRkopO-csy3hEHvUUpA_Co9EOUIMfFHTopFVeQVPeqxu80Q8wK4umQ7k06FFMII3u8Rnsugrd_d4S7ac9wWyNVM4dyLYXk1Pxyj051lVzuSaLfwXlfDuaYPWiWkaLnLIizXL-X_UFUeBEGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087028457</pqid></control><display><type>article</type><title>Fluctuations in the discrete TASEP with periodic initial configurations and the Airy_1 process</title><source>Free E- Journals</source><creator>Borodin, Alexei ; Ferrari, Patrik L ; Prähofer, Michael</creator><creatorcontrib>Borodin, Alexei ; Ferrari, Patrik L ; Prähofer, Michael</creatorcontrib><description>We consider the totally asymmetric simple exclusion process (TASEP) in discrete time with sequential update. The joint distribution of the positions of selected particles is expressed as a Fredholm determinant with a kernel defining a signed determinantal point process. We focus on periodic initial conditions where particles occupy dZ, d>=2. In the proper large time scaling limit, the fluctuations of particle positions are described by the Airy_1 process. Interpreted as a growth model, this confirms universality of fluctuations with flat initial conditions for a discrete set of slopes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Growth models ; Initial conditions ; Variation</subject><ispartof>arXiv.org, 2006-11</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math-ph/0611071.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Borodin, Alexei</creatorcontrib><creatorcontrib>Ferrari, Patrik L</creatorcontrib><creatorcontrib>Prähofer, Michael</creatorcontrib><title>Fluctuations in the discrete TASEP with periodic initial configurations and the Airy_1 process</title><title>arXiv.org</title><description>We consider the totally asymmetric simple exclusion process (TASEP) in discrete time with sequential update. The joint distribution of the positions of selected particles is expressed as a Fredholm determinant with a kernel defining a signed determinantal point process. We focus on periodic initial conditions where particles occupy dZ, d>=2. In the proper large time scaling limit, the fluctuations of particle positions are described by the Airy_1 process. Interpreted as a growth model, this confirms universality of fluctuations with flat initial conditions for a discrete set of slopes.</description><subject>Growth models</subject><subject>Initial conditions</subject><subject>Variation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi80KgkAYAJcgSMp3-KCzsO1qepVQOgZ5TpZ1zU9k1_aH6O2T8AE6zWFmNiRinJ-SImVsR2LnRkopO-csy3hEHvUUpA_Co9EOUIMfFHTopFVeQVPeqxu80Q8wK4umQ7k06FFMII3u8Rnsugrd_d4S7ac9wWyNVM4dyLYXk1Pxyj051lVzuSaLfwXlfDuaYPWiWkaLnLIizXL-X_UFUeBEGg</recordid><startdate>20061126</startdate><enddate>20061126</enddate><creator>Borodin, Alexei</creator><creator>Ferrari, Patrik L</creator><creator>Prähofer, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20061126</creationdate><title>Fluctuations in the discrete TASEP with periodic initial configurations and the Airy_1 process</title><author>Borodin, Alexei ; Ferrari, Patrik L ; Prähofer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20870284573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Growth models</topic><topic>Initial conditions</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Borodin, Alexei</creatorcontrib><creatorcontrib>Ferrari, Patrik L</creatorcontrib><creatorcontrib>Prähofer, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, Alexei</au><au>Ferrari, Patrik L</au><au>Prähofer, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fluctuations in the discrete TASEP with periodic initial configurations and the Airy_1 process</atitle><jtitle>arXiv.org</jtitle><date>2006-11-26</date><risdate>2006</risdate><eissn>2331-8422</eissn><abstract>We consider the totally asymmetric simple exclusion process (TASEP) in discrete time with sequential update. The joint distribution of the positions of selected particles is expressed as a Fredholm determinant with a kernel defining a signed determinantal point process. We focus on periodic initial conditions where particles occupy dZ, d>=2. In the proper large time scaling limit, the fluctuations of particle positions are described by the Airy_1 process. Interpreted as a growth model, this confirms universality of fluctuations with flat initial conditions for a discrete set of slopes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2006-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087028457 |
source | Free E- Journals |
subjects | Growth models Initial conditions Variation |
title | Fluctuations in the discrete TASEP with periodic initial configurations and the Airy_1 process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A25%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fluctuations%20in%20the%20discrete%20TASEP%20with%20periodic%20initial%20configurations%20and%20the%20Airy_1%20process&rft.jtitle=arXiv.org&rft.au=Borodin,%20Alexei&rft.date=2006-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087028457%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087028457&rft_id=info:pmid/&rfr_iscdi=true |