Analytic partial wave expansion and integral representation of Bessel beam

This paper describes the partial wave expansion and integral representation of Bessel beams in free space and in the presence of dispersion. The expansion of the Bessel beam wavepacket with constant spectrum is obtained as well. Furthermore, the sum of a triple Legendre polynomial product of same or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-04
1. Verfasser: Hodzic, Amer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hodzic, Amer
description This paper describes the partial wave expansion and integral representation of Bessel beams in free space and in the presence of dispersion. The expansion of the Bessel beam wavepacket with constant spectrum is obtained as well. Furthermore, the sum of a triple Legendre polynomial product of same order but different argument follows naturally from the partial wave expansion. The integration of all Bessel beams over all conical angles is shown to have a simple series representation, which confirms the equivalence between the results for both expansion and integral representation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086980499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086980499</sourcerecordid><originalsourceid>FETCH-proquest_journals_20869804993</originalsourceid><addsrcrecordid>eNqNjUsKwjAUAIMgWLR3CLguxKSt7VJFEdfuy1NfJSUmMS_1c3sreABXs5iBGbFEKrXIqlzKCUuJOiGELJeyKFTCDisL5h31mXsIUYPhT3ggx5cHS9pZDvbCtY14DYML6AMS2gjx61zL10iEhp8QbjM2bsEQpj9O2Xy3PW72mQ_u3iPFpnN9GHbUSFGVdSXyulb_VR8Lbz1L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086980499</pqid></control><display><type>article</type><title>Analytic partial wave expansion and integral representation of Bessel beam</title><source>Free E- Journals</source><creator>Hodzic, Amer</creator><creatorcontrib>Hodzic, Amer</creatorcontrib><description>This paper describes the partial wave expansion and integral representation of Bessel beams in free space and in the presence of dispersion. The expansion of the Bessel beam wavepacket with constant spectrum is obtained as well. Furthermore, the sum of a triple Legendre polynomial product of same order but different argument follows naturally from the partial wave expansion. The integration of all Bessel beams over all conical angles is shown to have a simple series representation, which confirms the equivalence between the results for both expansion and integral representation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beams (radiation) ; Integrals ; Polynomials ; Representations</subject><ispartof>arXiv.org, 2011-04</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hodzic, Amer</creatorcontrib><title>Analytic partial wave expansion and integral representation of Bessel beam</title><title>arXiv.org</title><description>This paper describes the partial wave expansion and integral representation of Bessel beams in free space and in the presence of dispersion. The expansion of the Bessel beam wavepacket with constant spectrum is obtained as well. Furthermore, the sum of a triple Legendre polynomial product of same order but different argument follows naturally from the partial wave expansion. The integration of all Bessel beams over all conical angles is shown to have a simple series representation, which confirms the equivalence between the results for both expansion and integral representation.</description><subject>Beams (radiation)</subject><subject>Integrals</subject><subject>Polynomials</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsKwjAUAIMgWLR3CLguxKSt7VJFEdfuy1NfJSUmMS_1c3sreABXs5iBGbFEKrXIqlzKCUuJOiGELJeyKFTCDisL5h31mXsIUYPhT3ggx5cHS9pZDvbCtY14DYML6AMS2gjx61zL10iEhp8QbjM2bsEQpj9O2Xy3PW72mQ_u3iPFpnN9GHbUSFGVdSXyulb_VR8Lbz1L</recordid><startdate>20110405</startdate><enddate>20110405</enddate><creator>Hodzic, Amer</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110405</creationdate><title>Analytic partial wave expansion and integral representation of Bessel beam</title><author>Hodzic, Amer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20869804993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Beams (radiation)</topic><topic>Integrals</topic><topic>Polynomials</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Hodzic, Amer</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodzic, Amer</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analytic partial wave expansion and integral representation of Bessel beam</atitle><jtitle>arXiv.org</jtitle><date>2011-04-05</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>This paper describes the partial wave expansion and integral representation of Bessel beams in free space and in the presence of dispersion. The expansion of the Bessel beam wavepacket with constant spectrum is obtained as well. Furthermore, the sum of a triple Legendre polynomial product of same order but different argument follows naturally from the partial wave expansion. The integration of all Bessel beams over all conical angles is shown to have a simple series representation, which confirms the equivalence between the results for both expansion and integral representation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086980499
source Free E- Journals
subjects Beams (radiation)
Integrals
Polynomials
Representations
title Analytic partial wave expansion and integral representation of Bessel beam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analytic%20partial%20wave%20expansion%20and%20integral%20representation%20of%20Bessel%20beam&rft.jtitle=arXiv.org&rft.au=Hodzic,%20Amer&rft.date=2011-04-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086980499%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086980499&rft_id=info:pmid/&rfr_iscdi=true