Correlation functions of Ising spins on thin graphs

We investigate analytically and numerically an Ising spin model with ferromagnetic coupling defined on random graphs corresponding to Feynman diagrams of a \(\phi^q\) field theory, which exhibits a mean field phase transition. We explicitly calculate the correlation functions both in the symmetric a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-04
Hauptverfasser: Bialas, Piotr, Oleś, Andrzej K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bialas, Piotr
Oleś, Andrzej K
description We investigate analytically and numerically an Ising spin model with ferromagnetic coupling defined on random graphs corresponding to Feynman diagrams of a \(\phi^q\) field theory, which exhibits a mean field phase transition. We explicitly calculate the correlation functions both in the symmetric and in the broken symmetry phase in the large volume limit. They agree with the results for finite size systems obtained from Monte Carlo simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086921180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086921180</sourcerecordid><originalsourceid>FETCH-proquest_journals_20869211803</originalsourceid><addsrcrecordid>eNqNisEKwjAQBYMgWLT_sOC5kGxsjeei6N17CZK0KSWJ2eT_teAHeHozzNuwCqUUjToh7lhNNHPOsTtj28qKyT6kZBadXfBgi3-tQBAsPMj5ESi6VT3kyXkYk44THdjW6oVM_ds9O96uz_7exBTexVAe5lCS_6YBueouKITi8r_XBy5nNE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086921180</pqid></control><display><type>article</type><title>Correlation functions of Ising spins on thin graphs</title><source>Free E- Journals</source><creator>Bialas, Piotr ; Oleś, Andrzej K</creator><creatorcontrib>Bialas, Piotr ; Oleś, Andrzej K</creatorcontrib><description>We investigate analytically and numerically an Ising spin model with ferromagnetic coupling defined on random graphs corresponding to Feynman diagrams of a \(\phi^q\) field theory, which exhibits a mean field phase transition. We explicitly calculate the correlation functions both in the symmetric and in the broken symmetry phase in the large volume limit. They agree with the results for finite size systems obtained from Monte Carlo simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broken symmetry ; Computer simulation ; Ferromagnetism ; Feynman diagrams ; Field theory ; Graphs ; Ising model ; Mathematical models ; Monte Carlo simulation ; Phase transitions ; Symmetry</subject><ispartof>arXiv.org, 2011-04</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bialas, Piotr</creatorcontrib><creatorcontrib>Oleś, Andrzej K</creatorcontrib><title>Correlation functions of Ising spins on thin graphs</title><title>arXiv.org</title><description>We investigate analytically and numerically an Ising spin model with ferromagnetic coupling defined on random graphs corresponding to Feynman diagrams of a \(\phi^q\) field theory, which exhibits a mean field phase transition. We explicitly calculate the correlation functions both in the symmetric and in the broken symmetry phase in the large volume limit. They agree with the results for finite size systems obtained from Monte Carlo simulations.</description><subject>Broken symmetry</subject><subject>Computer simulation</subject><subject>Ferromagnetism</subject><subject>Feynman diagrams</subject><subject>Field theory</subject><subject>Graphs</subject><subject>Ising model</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Phase transitions</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNisEKwjAQBYMgWLT_sOC5kGxsjeei6N17CZK0KSWJ2eT_teAHeHozzNuwCqUUjToh7lhNNHPOsTtj28qKyT6kZBadXfBgi3-tQBAsPMj5ESi6VT3kyXkYk44THdjW6oVM_ds9O96uz_7exBTexVAe5lCS_6YBueouKITi8r_XBy5nNE4</recordid><startdate>20110420</startdate><enddate>20110420</enddate><creator>Bialas, Piotr</creator><creator>Oleś, Andrzej K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110420</creationdate><title>Correlation functions of Ising spins on thin graphs</title><author>Bialas, Piotr ; Oleś, Andrzej K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20869211803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Broken symmetry</topic><topic>Computer simulation</topic><topic>Ferromagnetism</topic><topic>Feynman diagrams</topic><topic>Field theory</topic><topic>Graphs</topic><topic>Ising model</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Phase transitions</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Bialas, Piotr</creatorcontrib><creatorcontrib>Oleś, Andrzej K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bialas, Piotr</au><au>Oleś, Andrzej K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Correlation functions of Ising spins on thin graphs</atitle><jtitle>arXiv.org</jtitle><date>2011-04-20</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>We investigate analytically and numerically an Ising spin model with ferromagnetic coupling defined on random graphs corresponding to Feynman diagrams of a \(\phi^q\) field theory, which exhibits a mean field phase transition. We explicitly calculate the correlation functions both in the symmetric and in the broken symmetry phase in the large volume limit. They agree with the results for finite size systems obtained from Monte Carlo simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086921180
source Free E- Journals
subjects Broken symmetry
Computer simulation
Ferromagnetism
Feynman diagrams
Field theory
Graphs
Ising model
Mathematical models
Monte Carlo simulation
Phase transitions
Symmetry
title Correlation functions of Ising spins on thin graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Correlation%20functions%20of%20Ising%20spins%20on%20thin%20graphs&rft.jtitle=arXiv.org&rft.au=Bialas,%20Piotr&rft.date=2011-04-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086921180%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086921180&rft_id=info:pmid/&rfr_iscdi=true