Multiband quasiparticle interference in the topological insulator Cu_(x)Bi_(2)Te_(3)

We present angle resolved photoemission experiments and scanning tunneling spectroscopy results on the doped topological insulator Cu0.2Bi2Te3. Quasi-particle interference (QPI) measurements, based on high resolution conductance maps of the local density of states show that there are three distinct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
Hauptverfasser: E van Heumen, G A R van Dalum, Kaas, J, de Jong, N, Oen, J, Huang, Y K, Mitchell, A K, Fritz, L, Golden, M S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present angle resolved photoemission experiments and scanning tunneling spectroscopy results on the doped topological insulator Cu0.2Bi2Te3. Quasi-particle interference (QPI) measurements, based on high resolution conductance maps of the local density of states show that there are three distinct energy windows for quasi-particle scattering. Using a model Hamiltonian for this system two new scattering channels are identified: the first between the surface states and the conduction band and the second between conduction band states. We also observe that the real space density modulation has a predominant three-fold symmetry, which rules out a simple, isotropic impurity potential. We obtain agreement between experiment and theory by considering a modified scattering potential that is consistent with having mostly Bi-Te anti-site defects as scatterers.
ISSN:2331-8422