Crank-Nicolson Finite Element Discretizations for a 2D Linear Schrödinger-Type Equation Posed in a Noncylindrical Domain

Motivated by the paraxial narrow-angle approximation of the Helmholtz equation in domains of variable topography that appears as an important application in Underwater Acoustics, we analyze a general Schr\"odinger-type equation posed on two-dimensional variable domains with mixed boundary condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2011-10
Hauptverfasser: Antonopoulou, D C, Karali, G D, Plexousakis, M, Zouraris, G E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the paraxial narrow-angle approximation of the Helmholtz equation in domains of variable topography that appears as an important application in Underwater Acoustics, we analyze a general Schr\"odinger-type equation posed on two-dimensional variable domains with mixed boundary conditions. The resulting initial- and boundary-value problem is transformed into an equivalent one posed on a rectangular domain and is approximated by fully discrete, \(L^2\)-stable, finite element, Crank--Nicolson type schemes. We prove a global elliptic regularity theorem for complex elliptic boundary value problems with mixed conditions and derive \(L^2\)-error estimates of optimal order. Numerical experiments are presented which verify the optimal rate of convergence.
ISSN:2331-8422