Hydrogen gas sensing performance of low partial oxygen-mediated nanostructured zinc oxide thin film

•Nanostructured ZnO thin films prepared by thermal oxidation of sputtered Zn at low values of partial pressure of oxygen.•Control of microstructural features of ZnO films via precise oxygen potential pressure modulation.•H2 gas response was investigated in the range 75–1200ppm for ZnO films.•The as-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2017-09, Vol.248, p.868-877
Hauptverfasser: Drmosh, Q.A., Yamani, Z.H., Hossain, M.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 877
container_issue
container_start_page 868
container_title Sensors and actuators. B, Chemical
container_volume 248
creator Drmosh, Q.A.
Yamani, Z.H.
Hossain, M.K.
description •Nanostructured ZnO thin films prepared by thermal oxidation of sputtered Zn at low values of partial pressure of oxygen.•Control of microstructural features of ZnO films via precise oxygen potential pressure modulation.•H2 gas response was investigated in the range 75–1200ppm for ZnO films.•The as-fabricated sensor exhibited good sensitivity, selectivity and stability for the detection of hydrogen. In this work, an innovative design was presented to fabricate ZnO nanostructured thin film-based sensor by thermal oxidation at low values of oxygen partial pressure using a buffer gas mixture of H2 and H2O at different operating temperatures. Microstructural observations of the as-fabricated films prepared at different values of oxygen partial pressure showed significantly improved surface roughness and variations in porosity with reference to those obtained by thermal oxidation of sputtered Zn films in air and ZnO prepared by DC reactive sputtering followed by heated in argon. In low operating temperatures of oxygen partial pressure, ZnO nanostructures possessed larger grain sizes and higher porosity. ZnO film prepared by oxidization of sputtered Zn in low oxygen partial pressure possessed more oxygen vacancies that lead to the formation of more active sites to target gas and to be efficient gas sensor. As-fabricated ZnO nanostructures were characterized to be a platform for H2 gas sensing. ZnO nanostructured films with substantially improved surface roughness and porosity were found to show better gas sensing performance toward low levels of H2 (75–1200ppm). This work paves a possibility for developing new porous metal oxides sensors with high computability and good repeatability toward different gases.
doi_str_mv 10.1016/j.snb.2017.01.082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2086831902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400517300898</els_id><sourcerecordid>2086831902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-7d6af7301a08a8a6caf899c408eb501fffd6fb133fc78bdbfe9722729113c40e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4C3gedfJpt1k8SRFrVDwoueQTSY1pU1qslXr05tSz56Gge__Z_gIuWZQM2Dt7arOoa8bYKIGVoNsTsiIScErDkKckhF0zbSaAEzPyUXOKwCY8BZGxMz3NsUlBrrUmWYM2Ycl3WJyMW10MEijo-v4Rbc6DV6vafzeF7raoPV6QEuDDjEPaWeGXSrrjw-mMN4iHd59oM6vN5fkzOl1xqu_OSZvjw-vs3m1eHl6nt0vKsO76VAJ22onODANUkvdGu1k15kJSOynwJxztnU949wZIXvbO-xE04imY4wXCvmY3Bx7tyl-7DAPahV3KZSTqgHZSs46aArFjpRJMeeETm2T3-i0VwzUwaVaqeJSHVwqYKq4LJm7YwbL-58ek8rGY7FjfUIzKBv9P-lfE-F-Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086831902</pqid></control><display><type>article</type><title>Hydrogen gas sensing performance of low partial oxygen-mediated nanostructured zinc oxide thin film</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Drmosh, Q.A. ; Yamani, Z.H. ; Hossain, M.K.</creator><creatorcontrib>Drmosh, Q.A. ; Yamani, Z.H. ; Hossain, M.K.</creatorcontrib><description>•Nanostructured ZnO thin films prepared by thermal oxidation of sputtered Zn at low values of partial pressure of oxygen.•Control of microstructural features of ZnO films via precise oxygen potential pressure modulation.•H2 gas response was investigated in the range 75–1200ppm for ZnO films.•The as-fabricated sensor exhibited good sensitivity, selectivity and stability for the detection of hydrogen. In this work, an innovative design was presented to fabricate ZnO nanostructured thin film-based sensor by thermal oxidation at low values of oxygen partial pressure using a buffer gas mixture of H2 and H2O at different operating temperatures. Microstructural observations of the as-fabricated films prepared at different values of oxygen partial pressure showed significantly improved surface roughness and variations in porosity with reference to those obtained by thermal oxidation of sputtered Zn films in air and ZnO prepared by DC reactive sputtering followed by heated in argon. In low operating temperatures of oxygen partial pressure, ZnO nanostructures possessed larger grain sizes and higher porosity. ZnO film prepared by oxidization of sputtered Zn in low oxygen partial pressure possessed more oxygen vacancies that lead to the formation of more active sites to target gas and to be efficient gas sensor. As-fabricated ZnO nanostructures were characterized to be a platform for H2 gas sensing. ZnO nanostructured films with substantially improved surface roughness and porosity were found to show better gas sensing performance toward low levels of H2 (75–1200ppm). This work paves a possibility for developing new porous metal oxides sensors with high computability and good repeatability toward different gases.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2017.01.082</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Detection ; Gas detectors ; Gas sensors ; Hydrogen ; Hydrogen sensor ; Morphological properties ; Nanostructure ; Nanostructured materials ; Oxidation ; Oxygen ; Oxygen partial pressure ; Partial pressure ; Porosity ; Porous thin films ; Sputtering ; Surface roughness ; Thin films ; Zinc oxide ; Zinc oxides ; ZnO</subject><ispartof>Sensors and actuators. B, Chemical, 2017-09, Vol.248, p.868-877</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-7d6af7301a08a8a6caf899c408eb501fffd6fb133fc78bdbfe9722729113c40e3</citedby><cites>FETCH-LOGICAL-c395t-7d6af7301a08a8a6caf899c408eb501fffd6fb133fc78bdbfe9722729113c40e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2017.01.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Drmosh, Q.A.</creatorcontrib><creatorcontrib>Yamani, Z.H.</creatorcontrib><creatorcontrib>Hossain, M.K.</creatorcontrib><title>Hydrogen gas sensing performance of low partial oxygen-mediated nanostructured zinc oxide thin film</title><title>Sensors and actuators. B, Chemical</title><description>•Nanostructured ZnO thin films prepared by thermal oxidation of sputtered Zn at low values of partial pressure of oxygen.•Control of microstructural features of ZnO films via precise oxygen potential pressure modulation.•H2 gas response was investigated in the range 75–1200ppm for ZnO films.•The as-fabricated sensor exhibited good sensitivity, selectivity and stability for the detection of hydrogen. In this work, an innovative design was presented to fabricate ZnO nanostructured thin film-based sensor by thermal oxidation at low values of oxygen partial pressure using a buffer gas mixture of H2 and H2O at different operating temperatures. Microstructural observations of the as-fabricated films prepared at different values of oxygen partial pressure showed significantly improved surface roughness and variations in porosity with reference to those obtained by thermal oxidation of sputtered Zn films in air and ZnO prepared by DC reactive sputtering followed by heated in argon. In low operating temperatures of oxygen partial pressure, ZnO nanostructures possessed larger grain sizes and higher porosity. ZnO film prepared by oxidization of sputtered Zn in low oxygen partial pressure possessed more oxygen vacancies that lead to the formation of more active sites to target gas and to be efficient gas sensor. As-fabricated ZnO nanostructures were characterized to be a platform for H2 gas sensing. ZnO nanostructured films with substantially improved surface roughness and porosity were found to show better gas sensing performance toward low levels of H2 (75–1200ppm). This work paves a possibility for developing new porous metal oxides sensors with high computability and good repeatability toward different gases.</description><subject>Detection</subject><subject>Gas detectors</subject><subject>Gas sensors</subject><subject>Hydrogen</subject><subject>Hydrogen sensor</subject><subject>Morphological properties</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen partial pressure</subject><subject>Partial pressure</subject><subject>Porosity</subject><subject>Porous thin films</subject><subject>Sputtering</subject><subject>Surface roughness</subject><subject>Thin films</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><subject>ZnO</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4C3gedfJpt1k8SRFrVDwoueQTSY1pU1qslXr05tSz56Gge__Z_gIuWZQM2Dt7arOoa8bYKIGVoNsTsiIScErDkKckhF0zbSaAEzPyUXOKwCY8BZGxMz3NsUlBrrUmWYM2Ycl3WJyMW10MEijo-v4Rbc6DV6vafzeF7raoPV6QEuDDjEPaWeGXSrrjw-mMN4iHd59oM6vN5fkzOl1xqu_OSZvjw-vs3m1eHl6nt0vKsO76VAJ22onODANUkvdGu1k15kJSOynwJxztnU949wZIXvbO-xE04imY4wXCvmY3Bx7tyl-7DAPahV3KZSTqgHZSs46aArFjpRJMeeETm2T3-i0VwzUwaVaqeJSHVwqYKq4LJm7YwbL-58ek8rGY7FjfUIzKBv9P-lfE-F-Vg</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Drmosh, Q.A.</creator><creator>Yamani, Z.H.</creator><creator>Hossain, M.K.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170901</creationdate><title>Hydrogen gas sensing performance of low partial oxygen-mediated nanostructured zinc oxide thin film</title><author>Drmosh, Q.A. ; Yamani, Z.H. ; Hossain, M.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-7d6af7301a08a8a6caf899c408eb501fffd6fb133fc78bdbfe9722729113c40e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Detection</topic><topic>Gas detectors</topic><topic>Gas sensors</topic><topic>Hydrogen</topic><topic>Hydrogen sensor</topic><topic>Morphological properties</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen partial pressure</topic><topic>Partial pressure</topic><topic>Porosity</topic><topic>Porous thin films</topic><topic>Sputtering</topic><topic>Surface roughness</topic><topic>Thin films</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><topic>ZnO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drmosh, Q.A.</creatorcontrib><creatorcontrib>Yamani, Z.H.</creatorcontrib><creatorcontrib>Hossain, M.K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drmosh, Q.A.</au><au>Yamani, Z.H.</au><au>Hossain, M.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen gas sensing performance of low partial oxygen-mediated nanostructured zinc oxide thin film</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>248</volume><spage>868</spage><epage>877</epage><pages>868-877</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•Nanostructured ZnO thin films prepared by thermal oxidation of sputtered Zn at low values of partial pressure of oxygen.•Control of microstructural features of ZnO films via precise oxygen potential pressure modulation.•H2 gas response was investigated in the range 75–1200ppm for ZnO films.•The as-fabricated sensor exhibited good sensitivity, selectivity and stability for the detection of hydrogen. In this work, an innovative design was presented to fabricate ZnO nanostructured thin film-based sensor by thermal oxidation at low values of oxygen partial pressure using a buffer gas mixture of H2 and H2O at different operating temperatures. Microstructural observations of the as-fabricated films prepared at different values of oxygen partial pressure showed significantly improved surface roughness and variations in porosity with reference to those obtained by thermal oxidation of sputtered Zn films in air and ZnO prepared by DC reactive sputtering followed by heated in argon. In low operating temperatures of oxygen partial pressure, ZnO nanostructures possessed larger grain sizes and higher porosity. ZnO film prepared by oxidization of sputtered Zn in low oxygen partial pressure possessed more oxygen vacancies that lead to the formation of more active sites to target gas and to be efficient gas sensor. As-fabricated ZnO nanostructures were characterized to be a platform for H2 gas sensing. ZnO nanostructured films with substantially improved surface roughness and porosity were found to show better gas sensing performance toward low levels of H2 (75–1200ppm). This work paves a possibility for developing new porous metal oxides sensors with high computability and good repeatability toward different gases.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2017.01.082</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2017-09, Vol.248, p.868-877
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2086831902
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Detection
Gas detectors
Gas sensors
Hydrogen
Hydrogen sensor
Morphological properties
Nanostructure
Nanostructured materials
Oxidation
Oxygen
Oxygen partial pressure
Partial pressure
Porosity
Porous thin films
Sputtering
Surface roughness
Thin films
Zinc oxide
Zinc oxides
ZnO
title Hydrogen gas sensing performance of low partial oxygen-mediated nanostructured zinc oxide thin film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20gas%20sensing%20performance%20of%20low%20partial%20oxygen-mediated%20nanostructured%20zinc%20oxide%20thin%20film&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Drmosh,%20Q.A.&rft.date=2017-09-01&rft.volume=248&rft.spage=868&rft.epage=877&rft.pages=868-877&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2017.01.082&rft_dat=%3Cproquest_cross%3E2086831902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086831902&rft_id=info:pmid/&rft_els_id=S0925400517300898&rfr_iscdi=true