Limits of permutation sequences through permutation regularity
A permutation sequence \((\sigma_n)_{n \in \mathbb{N}}\) is said to be convergent if, for every fixed permutation \(\tau\), the density of occurrences of \(\tau\) in the elements of the sequence converges. We prove that such a convergent sequence has a natural limit object, namely a Lebesgue measura...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hoppen, Carlos Kohayakawa, Yoshiharu Carlos Gustavo Tamm de Araújo Moreira Rudini Menezes Sampaio |
description | A permutation sequence \((\sigma_n)_{n \in \mathbb{N}}\) is said to be convergent if, for every fixed permutation \(\tau\), the density of occurrences of \(\tau\) in the elements of the sequence converges. We prove that such a convergent sequence has a natural limit object, namely a Lebesgue measurable function \(Z:[0,1]^2 \to [0,1]\) with the additional properties that, for every fixed \(x \in [0,1]\), the restriction \(Z(x,\cdot)\) is a cumulative distribution function and, for every \(y \in [0,1]\), the restriction \(Z(\cdot,y)\) satisfies a "mass" condition. This limit process is well-behaved: every function in the class of limit objects is a limit of some permutation sequence, and two of these functions are limits of the same sequence if and only if they are equal almost everywhere. An important ingredient in the proofs is a new model of random permutations, which generalizes previous models and is interesting for its own sake. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086814216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086814216</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868142163</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw88nMzSwpVshPUyhILcotLUksyczPUyhOLSxNzUtOLVYoySjKL03PQJEtSk0vzUksyiyp5GFgTUvMKU7lhdLcDMpuriHOHroFRflAE4pL4rPyS4vygFLxRgYWZhaGJkaGZsbEqQIAUgQ5mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086814216</pqid></control><display><type>article</type><title>Limits of permutation sequences through permutation regularity</title><source>Free E- Journals</source><creator>Hoppen, Carlos ; Kohayakawa, Yoshiharu ; Carlos Gustavo Tamm de Araújo Moreira ; Rudini Menezes Sampaio</creator><creatorcontrib>Hoppen, Carlos ; Kohayakawa, Yoshiharu ; Carlos Gustavo Tamm de Araújo Moreira ; Rudini Menezes Sampaio</creatorcontrib><description>A permutation sequence \((\sigma_n)_{n \in \mathbb{N}}\) is said to be convergent if, for every fixed permutation \(\tau\), the density of occurrences of \(\tau\) in the elements of the sequence converges. We prove that such a convergent sequence has a natural limit object, namely a Lebesgue measurable function \(Z:[0,1]^2 \to [0,1]\) with the additional properties that, for every fixed \(x \in [0,1]\), the restriction \(Z(x,\cdot)\) is a cumulative distribution function and, for every \(y \in [0,1]\), the restriction \(Z(\cdot,y)\) satisfies a "mass" condition. This limit process is well-behaved: every function in the class of limit objects is a limit of some permutation sequence, and two of these functions are limits of the same sequence if and only if they are equal almost everywhere. An important ingredient in the proofs is a new model of random permutations, which generalizes previous models and is interesting for its own sake.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Distribution functions ; Permutations</subject><ispartof>arXiv.org, 2011-06</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Hoppen, Carlos</creatorcontrib><creatorcontrib>Kohayakawa, Yoshiharu</creatorcontrib><creatorcontrib>Carlos Gustavo Tamm de Araújo Moreira</creatorcontrib><creatorcontrib>Rudini Menezes Sampaio</creatorcontrib><title>Limits of permutation sequences through permutation regularity</title><title>arXiv.org</title><description>A permutation sequence \((\sigma_n)_{n \in \mathbb{N}}\) is said to be convergent if, for every fixed permutation \(\tau\), the density of occurrences of \(\tau\) in the elements of the sequence converges. We prove that such a convergent sequence has a natural limit object, namely a Lebesgue measurable function \(Z:[0,1]^2 \to [0,1]\) with the additional properties that, for every fixed \(x \in [0,1]\), the restriction \(Z(x,\cdot)\) is a cumulative distribution function and, for every \(y \in [0,1]\), the restriction \(Z(\cdot,y)\) satisfies a "mass" condition. This limit process is well-behaved: every function in the class of limit objects is a limit of some permutation sequence, and two of these functions are limits of the same sequence if and only if they are equal almost everywhere. An important ingredient in the proofs is a new model of random permutations, which generalizes previous models and is interesting for its own sake.</description><subject>Convergence</subject><subject>Distribution functions</subject><subject>Permutations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw88nMzSwpVshPUyhILcotLUksyczPUyhOLSxNzUtOLVYoySjKL03PQJEtSk0vzUksyiyp5GFgTUvMKU7lhdLcDMpuriHOHroFRflAE4pL4rPyS4vygFLxRgYWZhaGJkaGZsbEqQIAUgQ5mw</recordid><startdate>20110608</startdate><enddate>20110608</enddate><creator>Hoppen, Carlos</creator><creator>Kohayakawa, Yoshiharu</creator><creator>Carlos Gustavo Tamm de Araújo Moreira</creator><creator>Rudini Menezes Sampaio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110608</creationdate><title>Limits of permutation sequences through permutation regularity</title><author>Hoppen, Carlos ; Kohayakawa, Yoshiharu ; Carlos Gustavo Tamm de Araújo Moreira ; Rudini Menezes Sampaio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868142163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Convergence</topic><topic>Distribution functions</topic><topic>Permutations</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoppen, Carlos</creatorcontrib><creatorcontrib>Kohayakawa, Yoshiharu</creatorcontrib><creatorcontrib>Carlos Gustavo Tamm de Araújo Moreira</creatorcontrib><creatorcontrib>Rudini Menezes Sampaio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoppen, Carlos</au><au>Kohayakawa, Yoshiharu</au><au>Carlos Gustavo Tamm de Araújo Moreira</au><au>Rudini Menezes Sampaio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Limits of permutation sequences through permutation regularity</atitle><jtitle>arXiv.org</jtitle><date>2011-06-08</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>A permutation sequence \((\sigma_n)_{n \in \mathbb{N}}\) is said to be convergent if, for every fixed permutation \(\tau\), the density of occurrences of \(\tau\) in the elements of the sequence converges. We prove that such a convergent sequence has a natural limit object, namely a Lebesgue measurable function \(Z:[0,1]^2 \to [0,1]\) with the additional properties that, for every fixed \(x \in [0,1]\), the restriction \(Z(x,\cdot)\) is a cumulative distribution function and, for every \(y \in [0,1]\), the restriction \(Z(\cdot,y)\) satisfies a "mass" condition. This limit process is well-behaved: every function in the class of limit objects is a limit of some permutation sequence, and two of these functions are limits of the same sequence if and only if they are equal almost everywhere. An important ingredient in the proofs is a new model of random permutations, which generalizes previous models and is interesting for its own sake.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086814216 |
source | Free E- Journals |
subjects | Convergence Distribution functions Permutations |
title | Limits of permutation sequences through permutation regularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Limits%20of%20permutation%20sequences%20through%20permutation%20regularity&rft.jtitle=arXiv.org&rft.au=Hoppen,%20Carlos&rft.date=2011-06-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086814216%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086814216&rft_id=info:pmid/&rfr_iscdi=true |