Transition from static to dynamic macroscopic friction in the framework of the Frenkel-Kontorova model
A new generation of experiments on dry macroscopic friction has revealed that the transition from static to dynamic friction is essentially a spatially and temporally non-uniform process, initiated by a rupture-like detachment front. We show the suitability of the Frenkel-Kontorova model for describ...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2011-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gershenzon, Naum I Gust Bambakidis |
description | A new generation of experiments on dry macroscopic friction has revealed that the transition from static to dynamic friction is essentially a spatially and temporally non-uniform process, initiated by a rupture-like detachment front. We show the suitability of the Frenkel-Kontorova model for describing this transition. The model predicts the existence of two types of detachment fronts, explaining both the variability and abrupt change of velocity observed in experiments. The quantitative relation obtained between the velocity of the detachment front and the ratio of shear to normal stress is consistent with experiments. The model provides a functional dependence between slip velocity and shear stress, and predicts that slip velocity is independent of normal stress. Paradoxically, the transition from static to dynamic friction does not depend explicitly on ether the static or the dynamic friction coefficient, although the beginning and end of transition process are controlled by these coefficients. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086803219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086803219</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868032193</originalsourceid><addsrcrecordid>eNqNitEKgjAYhUcQJOU7DLoW5pZm15EE3Xovwzaauv32bxa9fUN6gK7Od875ViThQuRZdeB8Q1Lve8YYL4-8KERCdIPSeRMMOKoRLPVBBtPRAPT-cdJGtLJD8B1MkTWabnGNo-GhYpdWvQEHCnoZalRuUGN2AxcA4SWphbsad2St5ehV-sst2deX5nzNJoTnrHxoe5jRxavlrCorJnh-Ev9ZXyKbR70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086803219</pqid></control><display><type>article</type><title>Transition from static to dynamic macroscopic friction in the framework of the Frenkel-Kontorova model</title><source>Free E- Journals</source><creator>Gershenzon, Naum I ; Gust Bambakidis</creator><creatorcontrib>Gershenzon, Naum I ; Gust Bambakidis</creatorcontrib><description>A new generation of experiments on dry macroscopic friction has revealed that the transition from static to dynamic friction is essentially a spatially and temporally non-uniform process, initiated by a rupture-like detachment front. We show the suitability of the Frenkel-Kontorova model for describing this transition. The model predicts the existence of two types of detachment fronts, explaining both the variability and abrupt change of velocity observed in experiments. The quantitative relation obtained between the velocity of the detachment front and the ratio of shear to normal stress is consistent with experiments. The model provides a functional dependence between slip velocity and shear stress, and predicts that slip velocity is independent of normal stress. Paradoxically, the transition from static to dynamic friction does not depend explicitly on ether the static or the dynamic friction coefficient, although the beginning and end of transition process are controlled by these coefficients.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coefficient of friction ; Crack propagation ; Dependence ; Experiments ; Friction ; Mathematical models ; Shear stress ; Slip velocity ; Velocity</subject><ispartof>arXiv.org, 2011-11</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gershenzon, Naum I</creatorcontrib><creatorcontrib>Gust Bambakidis</creatorcontrib><title>Transition from static to dynamic macroscopic friction in the framework of the Frenkel-Kontorova model</title><title>arXiv.org</title><description>A new generation of experiments on dry macroscopic friction has revealed that the transition from static to dynamic friction is essentially a spatially and temporally non-uniform process, initiated by a rupture-like detachment front. We show the suitability of the Frenkel-Kontorova model for describing this transition. The model predicts the existence of two types of detachment fronts, explaining both the variability and abrupt change of velocity observed in experiments. The quantitative relation obtained between the velocity of the detachment front and the ratio of shear to normal stress is consistent with experiments. The model provides a functional dependence between slip velocity and shear stress, and predicts that slip velocity is independent of normal stress. Paradoxically, the transition from static to dynamic friction does not depend explicitly on ether the static or the dynamic friction coefficient, although the beginning and end of transition process are controlled by these coefficients.</description><subject>Coefficient of friction</subject><subject>Crack propagation</subject><subject>Dependence</subject><subject>Experiments</subject><subject>Friction</subject><subject>Mathematical models</subject><subject>Shear stress</subject><subject>Slip velocity</subject><subject>Velocity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAYhUcQJOU7DLoW5pZm15EE3Xovwzaauv32bxa9fUN6gK7Od875ViThQuRZdeB8Q1Lve8YYL4-8KERCdIPSeRMMOKoRLPVBBtPRAPT-cdJGtLJD8B1MkTWabnGNo-GhYpdWvQEHCnoZalRuUGN2AxcA4SWphbsad2St5ehV-sst2deX5nzNJoTnrHxoe5jRxavlrCorJnh-Ev9ZXyKbR70</recordid><startdate>20111121</startdate><enddate>20111121</enddate><creator>Gershenzon, Naum I</creator><creator>Gust Bambakidis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20111121</creationdate><title>Transition from static to dynamic macroscopic friction in the framework of the Frenkel-Kontorova model</title><author>Gershenzon, Naum I ; Gust Bambakidis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868032193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coefficient of friction</topic><topic>Crack propagation</topic><topic>Dependence</topic><topic>Experiments</topic><topic>Friction</topic><topic>Mathematical models</topic><topic>Shear stress</topic><topic>Slip velocity</topic><topic>Velocity</topic><toplevel>online_resources</toplevel><creatorcontrib>Gershenzon, Naum I</creatorcontrib><creatorcontrib>Gust Bambakidis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gershenzon, Naum I</au><au>Gust Bambakidis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Transition from static to dynamic macroscopic friction in the framework of the Frenkel-Kontorova model</atitle><jtitle>arXiv.org</jtitle><date>2011-11-21</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>A new generation of experiments on dry macroscopic friction has revealed that the transition from static to dynamic friction is essentially a spatially and temporally non-uniform process, initiated by a rupture-like detachment front. We show the suitability of the Frenkel-Kontorova model for describing this transition. The model predicts the existence of two types of detachment fronts, explaining both the variability and abrupt change of velocity observed in experiments. The quantitative relation obtained between the velocity of the detachment front and the ratio of shear to normal stress is consistent with experiments. The model provides a functional dependence between slip velocity and shear stress, and predicts that slip velocity is independent of normal stress. Paradoxically, the transition from static to dynamic friction does not depend explicitly on ether the static or the dynamic friction coefficient, although the beginning and end of transition process are controlled by these coefficients.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086803219 |
source | Free E- Journals |
subjects | Coefficient of friction Crack propagation Dependence Experiments Friction Mathematical models Shear stress Slip velocity Velocity |
title | Transition from static to dynamic macroscopic friction in the framework of the Frenkel-Kontorova model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Transition%20from%20static%20to%20dynamic%20macroscopic%20friction%20in%20the%20framework%20of%20the%20Frenkel-Kontorova%20model&rft.jtitle=arXiv.org&rft.au=Gershenzon,%20Naum%20I&rft.date=2011-11-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086803219%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086803219&rft_id=info:pmid/&rfr_iscdi=true |