Poincaré Invariant Quantum Mechanics based on Euclidean Green functions

We investigate a formulation of Poincaré invariant quantum mechanics where the dynamical input is Euclidean invariant Green functions or their generating functional. We argue that within this framework it is possible to calculate scattering observables, binding energies, and perform finite Poincaré...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-08
Hauptverfasser: Polyzou, W N, Kopp, Phil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate a formulation of Poincaré invariant quantum mechanics where the dynamical input is Euclidean invariant Green functions or their generating functional. We argue that within this framework it is possible to calculate scattering observables, binding energies, and perform finite Poincaré transformations without using any analytic continuation. We demonstrate, using a toy model, how matrix elements of \(e^{-\beta H}\) in normalizable states can be used to compute transition matrix elements for energies up to 2 GeV. We discuss some open problems.
ISSN:2331-8422